1
|
Malfertheiner P, Bornschen J and Selgrad
M: Role of Helicobacter pylori infection in gastric cancer
pathogenesis: a chance for prevention. J Dig Dis. 11:2–11. 2010.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee DS, Yang HK, Kim JW, et al:
Identifying the risk factors through the development of a
predictive model for gastric cancer in South Korea. Cancer Nurs.
32:135–142. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shen X, Zhang J, Yan Y, et al: Analysis
and estimates of the attributable risk for environmental and
genetic risk factors in gastric cancer in a Chinese population. J
Toxicol Environ Health A. 72:759–766. 2010. View Article : Google Scholar
|
4
|
Yamashita K, Sakuramoto S and Watanabe M:
Genomic and epigenetic profiles of gastric cancer: potential
diagnostic and therapeutic applications. Surg Today. 41:24–38.
2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hudler P: Genetic aspects of gastric
cancer instability. Scientific World Journal. 2012:7619092012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
González CA, Sala N and Rokkas T: Gastric
cancer: epidemiologic aspects. Helicobacter. 18 (Suppl 1):34–38.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Adams JC and Lawler J: The
thrombospondins. Int J Biochem Cell Biol. 36:961–968. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kazerounian S, Yee KO and Lawler J:
Thrombospondins in cancer. Cell Mol Life Sci. 65:700–712. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Yee KO, Connolly CM, Duquette M, et al:
The effect of thrombospondin-1 on breast cancer metastasis. Breast
Cancer Res Treat. 114:85–96. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou ZQ, Cao WH, Xie JJ, et al: Expression
and prognostic significance of THBS 1, Cyr61 and CTGF in esophageal
squamous cell carcinoma. BMC Cancer. 9:2912009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Streit M, Velasco P, Brown LF, et al:
Overexpression of thrombospondin-1 decreases angiogenesis and
inhibits the growth of human cutaneous squamous cell carcinomas. Am
J Pathol. 155:441–452. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Miyanaga K, Kato Y, Nakamura T, et al:
Expression and role of thrombospondin-1 in colorectal cancer.
Anticancer Res. 22:3941–3948. 2002.PubMed/NCBI
|
13
|
Kiyono K, Suzuki HI, Morishita Y, et al:
c-Ski overexpression promotes tumor growth and angiogenesis through
inhibition of transforming growth factor-beta signaling in
diffuse-type gastric carcinoma. Cancer Sci. 100:1809–1816. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang J, Ito R, Oue N, et al: Expression
of thrombospondin-1 is correlated with microvessel density in
gastric carcinoma. Virchows Arch. 442:563–568. 2003.PubMed/NCBI
|
15
|
Miyamoto N, Yamamoto H, Taniguchi H, et
al: Differential expression of angiogenesis-related genes in human
gastric cancers with and those without high-frequency
microsatellite instability. Cancer Lett. 254:42–53. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Nakao T, Kurita N, Komatsu M, et al:
Expression of thrombospondin-1 and Ski are prognostic factors in
advanced gastric cancer. Int J Clin Oncol. 16:145–152. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin XD, Chen SQ, Qi YL, et al:
Overexpression of thrombospondin-1 in stromal myofibroblasts is
associated with tumor growth and nodal metastasis in gastric
carcinoma. J Surg Oncol. 106:94–100. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sfar S, Saad H, Mosbah F and Chouchane L:
Combined effects of the angiogenic genes polymorphisms on prostate
cancer susceptibility and aggressiveness. Mol Biol Rep. 36:37–45.
2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zwicker JI, Peyvandi F, Palla R, et al:
The thrombospondin-1 N700S polymorphism is associated with early
myocardial infarction without altering von Willebrand factor
multimer size. Blood. 108:1280–1283. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ashokkumar M, Anbarasan C, Saibabu R, et
al: An association study of thrombospondin 1 and 2 SNPs with
coronary artery disease and myocardial infarction among South
Indians. Thromb Res. 128:49–53. 2011. View Article : Google Scholar
|
21
|
Koch W, Hoppmann P, de Waha A, et al:
Polymorphisms in thrombospondin genes and myocardial infarction: a
case-control study and a meta-analysis of available evidence. Hum
Mol Genet. 17:1120–1126. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lin XD, Chen SQ, Qi YL, et al:
Polymorphism of THBS1 rs1478604 A>G in 5-untranslated region is
associated with lymph node metastasis of gastric cancer in a
Southeast Chinese population. DNA Cell Biol. 31:511–519. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Scheet P and Stephens M: A fast and
flexible statistical model for large-scale population genotype
data: applications to inferring missing genotypes and haplotypic
phase. Am J Hum Genet. 78:629–644. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
van der Velden AW and Thomas AA: The role
of the 5-untranslated region of an mRNA in translation regulation
during development. Int J Biochem Cell Biol. 31:87–106. 1999.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Jansen RP: mRNA localization: message on
the move. Nat Rev Mol Cell Biol. 2:247–256. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bashirullah A, Cooperstock RL and Lipshitz
HD: Spatial and temporal control of RNA stability. Proc Natl Acad
Sci USA. 98:7025–7028. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mignone F, Gissi C, Liuni S and Pesole G:
Untranslated regions of mRNAs. Genome Biol. 3:REVIEWS0004. 2002.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Cazzola M and Skoda RC: Translation
pathophysiology: a novel molecular mechanism of human disease.
Blood. 95:3280–3288. 2000.PubMed/NCBI
|
29
|
Mihailovich M, Thermann R, Grohovaz F, et
al: Complex translational regulation of BACE1 involves upstream
AUGs and stimulatory elements within the 5′ untranslated region.
Nucleic Acids Res. 35:2975–2985. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Welch EM, Barton ER, Zhuo J, et al: PTC124
targets genetic disorders caused by nonsense mutations. Nature.
447:87–91. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen JM, Férec C and Cooper DN: A
systematic analysis of disease-associated variants in the 3′
regulatory regions of human protein-coding genes II: the importance
of mRNA secondary structure in assessing the functionality of 3′UTR
variants. Hum. Genet. 120:301–333. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tian X, Tian Y, Ma P, et al: Association
between MDM2 SNP 309 T>G and risk of gastric cancer: a
meta-analysis. Asian Pac J Cancer Prev. 14:1925–1929. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhuang W, Wu XT, Zhou Y, et al:
Polymorphisms of thymidylate synthase in the 5′- and
3′-untranslated regions and gastric cancer. Dig Dis Sci.
54:1379–1385. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hamai Y, Matsumura S, Matsusaki K, et al:
A single nucleotide polymorphism in the 5′ untranslated region of
the EGF gene is associated with occurrence and malignant
progression of gastric cancer. Pathobiology. 72:133–138. 2005.
View Article : Google Scholar : PubMed/NCBI
|