1
|
Faga A, Nicoletti G, Gregotti C, Finotti
V, Nitto A and Gioglio L: Effects of thermal water on skin
regeneration. Int J Mol Med. 29:732–740. 2012.PubMed/NCBI
|
2
|
International Organization for
Standardization (ISO). Water quality-detection and enumeration of
Legionella: Direct membrane filtration method for waters with low
bacterial counts. ISO 11731–11732. 2004.http://www.legionellaonline.it/Accessed. May
26–2015
|
3
|
Éditeur officiel du Québec. Regulation
respecting bottled water: Food Products Act. http://www2.publicationsduquebec.gouv.qc.ca/dynamicSearch/telecharge.php?type=3&file=/P_29/P29R2_A.HTMAccessed.
August 1–2015
|
4
|
Horneman AJ and Ali A: Aeromonas. Manual
of Clinical Microbiology. Versalovic J, Carroll KC, Funke G,
Jorgensen JH, Landry ML and Warnock DW: (10th). ASM Press.
(Washington, DC). 658–665. 2011.
|
5
|
Kompanets EV, Isaeva NM and Balakhnin IA:
Bacteria of the genus Aeromonas and their role in
aquaculture. Mikrobiol Zh. 54:89–99. 1992.(In Russian). PubMed/NCBI
|
6
|
El Amraoui B, El Amraoui M, Cohen N and
Fassouane A: Antifungal and antibacterial activity of marine
microorganisms. Ann Pharm Fr. 72:107–111. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cheriaa J, Mosrati R, Ladhari N and
Bakhrouf A: Acclimated biomass that degrades Sulfonated Naphthalene
Formaldehyde Condensate. Pak J Biol Sci. 11:1588–1593. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Durán M, Faljoni-Alario A and Durán N:
Chromobacterium violaceum and its important metabolites -
review. Folia Microbiol (Praha). 55:535–547. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hoshino T: Violacein and related
tryptophan metabolites produced by Chromobacterium
violaceum: Biosynthetic mechanism and pathway for construction
of violacein core. Appl Microbiol Biotechnol. 91:1463–1475. 2011.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kimura K, Inoue T, Kato D, Negoro S, Ike M
and Takeo M: Distribution of chitin/chitosan-like
bioflocculant-producing potential in the genus Citrobacter. Appl
Microbiol Biotechnol. 97:9569–9577. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kocharova NA, Mieszała M, Zatonsky GV,
Staniszewska M, Shashkov AS, Gamian A and Knirel YA: Structure of
the O-polysaccharide of Citrobacter youngae O1 containing an
alpha-D-ribofuranosyl group. Carbohydr Res. 339:321–325. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yokozeki K and Hara S: A novel and
efficient enzymatic method for the production of peptides from
unprotected starting materials. J Biotechnol. 115:211–220. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Stockwell VO, Johnson KB, Sugar D and
Loper JE: Antibiosis Contributes to Biological Control of Fire
Blight by Pantoea agglomerans Strain Eh252 in Orchards.
Phytopathology. 92:1202–1209. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rezzonico F, Smits TH, Montesinos E, Frey
JE and Duffy B: Genotypic comparison of Pantoea agglomerans
plant and clinical strains. BMC Microbiol. 9:2042009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zuo Z, Gong T, Che Y, Liu R, Xu P, Jiang
H, Qiao C, Song C and Yang C: Engineering Pseudomonas putida KT2440
for simultaneous degradation of organophosphates and pyrethroids
and its application in bioremediation of soil. Biodegradation.
26:223–233. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Espinosa Urgel, Salido A and Ramos JL:
Genetic analysis of functions involved in adhesion of Pseudomonas
putida to seeds. J Bacteriol. 182:2363–2369. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li C, Yang J, Wang X, Wang E, Li B, He R
and Yuan H: Removal of nitrogen by heterotrophic
nitrification-aerobic denitrification of a phosphate accumulating
bacterium Pseudomonas stutzeri YG-24. Bioresour Technol.
182:18–25. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shi YH, Ren L, Jia Y and Yan YC: Genome
Sequence of Organophosphorus Pesticide-Degrading Bacterium
Pseudomonas stutzeri Strain YC-YH1. Genome Announc.
3:e00192–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Daifalla N, Cayabyab MJ, Xie E, Kim HB,
Tzipori S, Stashenko P, Duncan M and Campos-Neto A: Commensal
Streptococcus mitis is a unique vector for oral mucosal
vaccination. Microbes Infect. 17:237–242. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guarner F, Bourdet-Sicard R, Brandtzaeg P,
Gill HS, McGuirk P, van Eden W, Versalovic J, Weinstock JV and Rook
GA: Mechanisms of disease: The hygiene hypothesis revisited. Nat
Clin Pract Gastroenterol Hepatol. 3:275–284. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Petrof EO, Gloor GB, Vanner SJ, Weese SJ,
Carter D, Daigneault MC, Brown EM, Schroeter K and Allen-Vercoe E:
Stool substitute transplant therapy for the eradication of
Clostridium difficile infection: ‘RePOOPulating’ the gut.
Microbiome. 1:32013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bested AC, Logan AC and Selhub EM:
Intestinal microbiota, probiotics and mental health: From
Metchnikoff to modern advances: Part III - convergence toward
clinical trials. Gut Pathog. 5:42013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Selhub EM, Logan AC and Bested AC:
Fermented foods, microbiota, and mental health: Ancient practice
meets nutritional psychiatry. J Physiol Anthropol. 33:22014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Grice EA and Segre JA: The skin
microbiome. Nat Rev Microbiol. 9:244–253. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Huttenhower C, Gevers D, Knight R, et al:
Human Microbiome Project Consortium: Structure, function and
diversity of the healthy human microbiome. Nature. 486:207–214.
2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nakatsuji T, Chiang HI, Jiang SB,
Nagarajan H, Zengler K and Gallo RL: The microbiome extends to
subepidermal compartments of normal skin. Nat Commun. 4:14312013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Krutmann J: Pre- and probiotics for human
skin. Clin Plast Surg. 39:59–64. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Al-Ghazzewi FH and Tester RF: Impact of
prebiotics and probiotics on skin health. Benef Microbes. 5:99–107.
2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bockmühl D, Jassoy C, Nieveler S,
Scholtyssek R, Wadle A and Waldmann-Laue M: Prebiotic Cosmetics: An
Alternative to Antibacterial Products. Int J Cosmet Sci. 29:63–64.
2007. View Article : Google Scholar
|
30
|
Gallo RL, Murakami M, Ohtake T and Zaiou
M: Biology and clinical relevance of naturally occurring
antimicrobial peptides. J Allergy Clin Immunol. 110:823–831. 2002.
View Article : Google Scholar : PubMed/NCBI
|
31
|
de Jongh GJ, Zeeuwen PL, Kucharekova M,
Pfundt R, van der Valk PG, Blokx W, Dogan A, Hiemstra PS, van de
Kerkhof PC and Schalkwijk J: High expression levels of keratinocyte
antimicrobial proteins in psoriasis compared with atopic
dermatitis. J Invest Dermatol. 125:1163–1173. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Faga A, Pelfini C, Concia E and Bona F:
Variazioni della naturale attività antibatterica della cute: Un
metodo di valutazione di detergenti e/o antisettici. Chron Derm.
2:233–241. 1981.(In Italian).
|
33
|
Nocera T, Fabre P, Rossi AB and Mengeaud
V: Clinical development program of a new dermocosmetic range of
products containing I-modulia (Aquaphilus dolomiae extract)
in atopic dermatitis. J Am Acad Dermatol. 70:(suppl 1).
AB62014.
|
34
|
Patrizi A, Bacquey A, Fabre P, Schmitt AM,
Decoster CJ, Phulpin C, Theunis J and Mengeaud V: Clinical and
biometrologic evaluation of a novel emollient balm containing an
Aquaphilus dolomiae extract in 1- to 4-year-old children
suffering from atopic dermatitis: International, multicenter,
randomized versus control group study. J Am Acad Dermatol.
70:(suppl 1). AB622014. View Article : Google Scholar
|
35
|
Aries MF, Fabre P, Vaissière C, Delga H,
Leveque M, Castex-Rizzi N, Bessou-Touya S and Nguyen T:
Antiinflammatory and immunomodulatory effect of I-modulia, an
Aquaphilus dolomiae extract, on atopic dermatitis in vitro.
J Am Acad Dermatol. 70:(suppl 1). AB612014. View Article : Google Scholar
|
36
|
Aries MF, Fabre P, Duplan H, Hernandez
Pigeon H, Galliano MF, Castex-Rizzi N, Bessou-Touya S and Nguyen T:
I-modulia, an Aquaphilus dolomiae extract, stimulates innate immune
response through Toll-like receptor activation. J Am Acad Dermatol.
70:(suppl 1). AB632014. View Article : Google Scholar
|
37
|
Mahe YF, Perez MJ, Tacheau C, Fanchon C,
Martin R, Rousset F and Seite S: A new Vitreoscilla
filiformis extract grown on spa water-enriched medium activates
endogenous cutaneous antioxidant and antimicrobial defenses through
a potential Toll-like receptor 2/protein kinase C, zeta
transduction pathway. Clin Cosmet Investig Dermatol. 6:191–196.
2013.PubMed/NCBI
|
38
|
Gueniche A, Knaudt B, Schuck E, Volz T,
Bastien P, Martin R, Röcken M, Breton L and Biedermann T: Effects
of nonpathogenic gram-negative bacterium Vitreoscilla
filiformis lysate on atopic dermatitis: A prospective,
randomized, double-blind, placebo-controlled clinical study. Br J
Dermatol. 159:1357–1363. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Volz T, Skabytska Y, Guenova E, Chen KM,
Frick JS, Kirschning CJ, Kaesler S, Röcken M and Biedermann T:
Nonpathogenic bacteria alleviating atopic dermatitis inflammation
induce IL-10-producing dendritic cells and regulatory Tr1 cells. J
Invest Dermatol. 134:96–104. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nakatsuji T and Gallo RL: Dermatological
therapy by topical application of non-pathogenic bacteria. J Invest
Dermatol. 134:11–14. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Agger WA, McCormick JD and Gurwith MJ:
Clinical and microbiological features of Aeromonas
hydrophila-associated diarrhea. J Clin Microbiol. 21:909–913.
1985.PubMed/NCBI
|
42
|
Minnaganti VR, Patel PJ, Iancu D, Schoch
PE and Cunha BA: Necrotizing fasciitis caused by Aeromonas
hydrophila. Heart Lung. 29:306–308. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sneath PH, Whelan JP, Bhagwan Singh R and
Edwards D: Fatal infection by Chromobacterium violaceum.
Lancet. 265:276–277. 1953. View Article : Google Scholar : PubMed/NCBI
|
44
|
Janknecht P, Schneider CM and Ness T:
Outbreak of Empedobacter brevis endophthalmitis after cataract
extraction. Graefes Arch Clin Exp Ophthalmol. 240:291–295. 2002.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Jain S, Bohra I, Mahajan R, Jain S and
Chugh TD: Pantoea agglomerans infection behaving like a
tumor after plant thorn injury: An unusual presentation. Indian J
Pathol Microbiol. 55:386–388. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shih CC, Chen YC, Chang SC, Luh KT and
Hsieh WC: Bacteremia due to Citrobacter species:
Significance of primary intraabdominal infection. Clin Infect Dis.
23:543–549. 1996. View Article : Google Scholar : PubMed/NCBI
|
47
|
Shang ST, Chiu SK, Chan MC, Wang NC, Yang
YS, Lin JC and Chang FY: Invasive Brevundimonas vesicularis
bacteremia: Two case reports and review of the literature. J
Microbiol Immunol Infect. 45:468–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Von Graevenitz A and Weinstein J:
Pathogenic significance of Pseudomonas fluorescensPseudomonas
putida. Yale J Biol Med. 44:265–273. 1971.PubMed/NCBI
|
49
|
Noble RC and Overman SB: Pseudomonas
stutzeri infection. A review of hospital isolates and a review
of the literature. Diagn Microbiol Infect Dis. 19:51–56. 1994.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Mitchell J: Streptococcus mitis:
Walking the line between commensalism and pathogenesis. Mol Oral
Microbiol. 26:89–98. 2011. View Article : Google Scholar : PubMed/NCBI
|