1
|
Thomas E, Storb R, Clift RA, Fefer A,
Johnson FL, Neiman PE, Lerner KG, Glucksberg H and Buckner CD:
Bone-marrow transplantation (first of two parts). N Engl J Med.
292:832–843. 1975. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vacanti CA, Bonassar LJ, Vacanti MP and
Shufflebarger J: Replacement of an avulsed phalanx with
tissue-engineered bone. N Engl J Med. 344:1511–1514. 2001.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Qi Y, Zhao T, Xu K, Dai T and Yan W: The
restoration of full-thickness cartilage defects with mesenchymal
stem cells (MSCs) loaded and cross-linked bilayer collagen
scaffolds on rabbit model. Mol Biol Rep. 39:1231–1237. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Poh M, Boyer M, Solan A, Dahl SL, Pedrotty
D, Banik SS, McKee JA, Klinger RY, Counter CM and Niklason LE:
Blood vessels engineered from human cells. Lancet. 365:2122–2124.
2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Atala A, Bauer SB, Soker S, Yoo JJ and
Retik AB: Tissue-engineered autologous bladders for patients
needing cystoplasty. Lancet. 367:1241–1246. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kushida A, Yamato M, Isoi Y, Kikuchi A and
Okano T: A noninvasive transfer system for polarized renal tubule
epithelial cell sheets using temperature-responsive culture dishes.
Eur Cell Mater. 10:23–30. 2005.PubMed/NCBI
|
7
|
Kushida A, Yamato M, Kikuchi A and Okano
T: Two-dimensional manipulation of differentiated Madin-Darby
canine kidney (MDCK) cell sheets: The noninvasive harvest from
temperature-responsive culture dishes and transfer to other
surfaces. J Biomed Mater Res. 54:37–46. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kushida A, Yamato M, Konno C, Kikuchi A,
Sakurai Y and Okano T: Decrease in culture temperature releases
monolayer endothelial cell sheets together with deposited
fibronectin matrix from temperature-responsive culture surfaces. J
Biomed Mater Res. 45:355–362. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Okano T, Yamada N, Sakai H and Sakurai Y:
A novel recovery system for cultured cells using plasma-treated
polystyrene dishes grafted with poly(N-isopropylacrylamide). J
Biomed Mater Res. 27:1243–1251. 1993. View Article : Google Scholar : PubMed/NCBI
|
10
|
Okano T, Yamada N, Okuhara M, Sakai H and
Sakurai Y: Mechanism of cell detachment from temperature-modulated,
hydrophilic-hydrophobic polymer surfaces. Biomaterials. 16:297–303.
1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Itabashi Y, Miyoshi S, Kawaguchi H, Yuasa
S, Tanimoto K, Furuta A, Shimizu T, Okano T, Fukuda K and Ogawa S:
A new method for manufacturing cardiac cell sheets using
fibrin-coated dishes and its electrophysiological studies by
optical mapping. Artif Organs. 29:95–103. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wei F, Qu C, Song T, Ding G, Fan Z, Liu D,
Liu Y, Zhang C, Shi S and Wang S: Vitamin C treatment promotes
mesenchymal stem cell sheet formation and tissue regeneration by
elevating telomerase activity. J Cell Physiol. 227:3216–3224. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Nishida K: Tissue engineering of the
cornea. Cornea. 22(Suppl 7): S28–S34. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang J, Yamato M, Nishida K, Ohki T,
Kanzaki M, Sekine H, Shimizu T and Okano T: Cell delivery in
regenerative medicine: The cell sheet engineering approach. J
Control Release. 116:193–203. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Nishida K, Yamato M, Hayashida Y, Watanabe
K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, et
al: Functional bioengineered corneal epithelial sheet grafts from
corneal stem cells expanded ex vivo on a temperature-responsive
cell culture surface. Transplantation. 77:379–385. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tsai RJ, Li LM and Chen JK: Reconstruction
of damaged corneas by transplantation of autologous limbal
epithelial cells. N Engl J Med. 343:86–93. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nishida K, Yamato M, Hayashida Y, Watanabe
K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H,
et al: Corneal reconstruction with tissue-engineered cell sheets
composed of autologous oral mucosal epithelium. N Engl J Med.
351:1187–1196. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Flores MG, Hasegawa M, Yamato M, Takagi R,
Okano T and Ishikawa I: Cementum-periodontal ligament complex
regeneration using the cell sheet technique. J Periodontal Res.
43:364–371. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Akizuki T, Oda S, Komaki M, Tsuchioka H,
Kawakatsu N, Kikuchi A, Yamato M, Okano T and Ishikawa I:
Application of periodontal ligament cell sheet for periodontal
regeneration: A pilot study in beagle dogs. J Periodontal Res.
40:245–251. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Iwata T, Yamato M, Tsuchioka H, Takagi R,
Mukobata S, Washio K, Okano T and Ishikawa I: Periodontal
regeneration with multi-layered periodontal ligament-derived cell
sheets in a canine model. Biomaterials. 30:2716–2723. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hasegawa M, Yamato M, Kikuchi A, Okano T
and Ishikawa I: Human periodontal ligament cell sheets can
regenerate periodontal ligament tissue in an athymic rat model.
Tissue Eng. 11:469–478. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fabian T, Federico JA and Ponn RB: Fibrin
glue in pulmonary resection: A prospective, randomized, blinded
study. Ann Thorac Surg. 75:1587–1592. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kanzaki M, Yamato M, Yang J, Sekine H,
Kohno C, Takagi R, Hatakeyama H, Isaka T, Okano T and Onuki T:
Dynamic sealing of lung air leaks by the transplantation of tissue
engineered cell sheets. Biomaterials. 28:4294–4302. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kanzaki M, Yamato M, Yang J, Sekine H,
Takagi R, Isaka T, Okano T and Onuki T: Functional closure of
visceral pleural defects by autologous tissue engineered cell
sheets. Eur J Cardiothorac Surg. 34:864–869. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Asakawa N, Shimizu T, Tsuda Y, Sekiya S,
Sasagawa T, Yamato M, Fukai F and Okano T: Pre-vascularization of
in vitro three-dimensional tissues created by cell sheet
engineering. Biomaterials. 31:3903–3909. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shimizu T, Yamato M, Kikuchi A and Okano
T: Cell sheet engineering for myocardial tissue reconstruction.
Biomaterials. 24:2309–2316. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shimizu T, Sekine H, Yang J, Isoi Y,
Yamato M, Kikuchi A, Kobayashi E and Okano T: Polysurgery of cell
sheet grafts overcomes diffusion limits to produce thick,
vascularized myocardial tissues. FASEB J. 20:708–710.
2006.PubMed/NCBI
|
28
|
Miyagawa S, Sawa Y, Sakakida S, Taketani
S, Kondoh H, Memon IA, Imanishi Y, Shimizu T, Okano T and Matsuda
H: Tissue cardiomyoplasty using bioengineered contractile
cardiomyocyte sheets to repair damaged myocardium: Their
integration with recipient myocardium. Transplantation.
80:1586–1595. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tsumanuma Y, Iwata T, Washio K, Yoshida T,
Yamada A, Takagi R, Ohno T, Lin K, Yamato M, Ishikawa I, et al:
Comparison of different tissue-derived stem cell sheets for
periodontal regeneration in a canine 1-wall defect model.
Biomaterials. 32:5819–5825. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Miyahara Y, Nagaya N, Kataoka M, Yanagawa
B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, et
al: Monolayered mesenchymal stem cells repair scarred myocardium
after myocardial infarction. Nat Med. 12:459–465. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Okura H, Matsuyama A, Lee CM, Saga A,
Kakuta-Yamamoto A, Nagao A, Sougawa N, Sekiya N, Takekita K, Shudo
Y, et al: Cardiomyoblast-like cells differentiated from human
adipose tissue-derived mesenchymal stem cells improve left
ventricular dysfunction and survival in a rat myocardial infarction
model. Tissue Eng Part C Methods. 16:417–425. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Qi Y, Du Y, Li W, Dai X, Zhao T and Yan W:
Cartilage repair using mesenchymal stem cell (MSC) sheet and
MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg
Sports Traumatol Arthrosc. 22:1424–1433. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Qi Y and Yan W: Mesenchymal stem cell
sheet encapsulated cartilage debris provides great potential for
cartilage defects repair in osteoarthritis. Med Hypotheses.
79:420–421. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dumas A, Moreau MF, Ghérardi RK, Baslé MF
and Chappard D: Bone grafts cultured with bone marrow stromal cells
for the repair of critical bone defects: An experimental study in
mice. J Biomed Mater Res A. 90:1218–1229. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yang J, Yamato M, Kohno C, Nishimoto A,
Sekine H, Fukai F and Okano T: Cell sheet engineering: Recreating
tissues without biodegradable scaffolds. Biomaterials.
26:6415–6422. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ouyang HW, Cao T, Zou XH, Heng BC, Wang
LL, Song XH and Huang HF: Mesenchymal stem cell sheets revitalize
nonviable dense grafts: Implications for repair of large-bone and
tendon defects. Transplantation. 82:170–174. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gao Z, Chen F, Zhang J, He L, Cheng X, Ma
Q and Mao T: Vitalisation of tubular coral scaffolds with cell
sheets for regeneration of long bones: A preliminary study in nude
mice. Br J Oral Maxillofac Surg. 47:116–122. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM
and Hutmacher DW: Combined marrow stromal cell-sheet techniques and
high-strength biodegradable composite scaffolds for engineered
functional bone grafts. Biomaterials. 28:814–824. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zou XH, Cai HX, Yin Z, Chen X, Jiang YZ,
Hu H and Ouyang HW: A novel strategy incorporated the power of
mesenchymal stem cells to allografts for segmental bone tissue
engineering. Cell Transplant. 18:433–441. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Qi Y, Wang Y, Yan W, Li H, Shi Z and Pan
Z: Combined mesenchymal stem cell sheets and rhBMP-2-releasing
calcium sulfate-rhBMP-2 scaffolds for segmental bone tissue
engineering. Cell Transplant. 21:693–705. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Qi Y, Zhao T, Yan W, Xu K, Shi Z and Wang
J: Mesenchymal stem cell sheet transplantation combined with
locally released simvastatin enhances bone formation in a rat tibia
osteotomy model. Cytotherapy. 15:44–56. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nakamura A, Akahane M, Shigematsu H,
Tadokoro M, Morita Y, Ohgushi H, Dohi Y, Imamura T and Tanaka Y:
Cell sheet transplantation of cultured mesenchymal stem cells
enhances bone formation in a rat nonunion model. Bone. 46:418–424.
2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ma D, Ren L, Chen F, Liu Y, Zhang J, Xue Z
and Mao T: Reconstruction of rabbit critical-size calvarial defects
using autologous bone marrow stromal cell sheets. Ann Plast Surg.
65:259–265. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhou W, Han C, Song Y, Yan X, Li D, Chai
Z, Feng Z, Dong Y, Li L, Xie X, et al: The performance of bone
marrow mesenchymal stem cell - implant complexes prepared by cell
sheet engineering techniques. Biomaterials. 31:3212–3221. 2010.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yu M, Zhou W, Song Y, Yu F, Li D, Na S,
Zou G, Zhai M and Xie C: Development of mesenchymal stem
cell-implant complexes by cultured cells sheet enhances
osseointegration in type 2 diabetic rat model. Bone. 49:387–394.
2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Mifune Y, Matsumoto T, Takayama K, Terada
S, Sekiya N, Kuroda R, Kurosaka M, Fu FH and Huard J: Tendon graft
revitalization using adult anterior cruciate ligament (ACL)-derived
CD34+ cell sheets for ACL reconstruction. Biomaterials.
34:5476–5487. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lui PP, Wong OT and Lee YW: Application of
tendon-derived stem cell sheet for the promotion of graft healing
in anterior cruciate ligament reconstruction. Am J Sports Med.
42:681–689. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Chang CH, Chen CH, Liu HW, Whu SW, Chen
SH, Tsai CL and Hsiue GH: Bioengineered periosteal progenitor cell
sheets to enhance tendon-bone healing in a bone tunnel. Biomed J.
35:473–480. 2012.PubMed/NCBI
|
49
|
Sekiya N, Tobita K, Beckman S, Okada M,
Gharaibeh B, Sawa Y, Kormos RL and Huard J: Muscle-derived stem
cell sheets support pump function and prevent cardiac arrhythmias
in a model of chronic myocardial infarction. Mol Ther. 21:662–669.
2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kamata S, Miyagawa S, Fukushima S,
Nakatani S, Kawamoto A, Saito A, Harada A, Shimizu T, Daimon T,
Okano T, et al: Improvement of cardiac stem cell-Sheet therapy for
chronic ischemic injury by adding endothelial progenitor cell
transplantation: Analysis of layer-specific regional cardiac
function. Cell Transplant. 23:1305–1319. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Matsuura K, Masuda S, Haraguchi Y, Yasuda
N, Shimizu T, Hagiwara N, Zandstra PW and Okano T: Creation of
mouse embryonic stem cell-derived cardiac cell sheets.
Biomaterials. 32:7355–7362. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang W, Yang W, Liu X, Zhang L, Huang W
and Zhang Y: Rapidly constructed scaffold-free embryonic stem cell
sheets for ocular surface reconstruction. Scanning. 36:286–292.
2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wakitani S, Takaoka K, Hattori T, Miyazawa
N, Iwanaga T, Takeda S, Watanabe TK and Tanigami A: Embryonic stem
cells injected into the mouse knee joint form teratomas and
subsequently destroy the joint. Rheumatology (Oxford). 42:162–165.
2003. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kito T, Shibata R, Ishii M, Suzuki H,
Himeno T, Kataoka Y, Yamamura Y, Yamamoto T, Nishio N, Ito S, et
al: iPS cell sheets created by a novel magnetite tissue engineering
method for reparative angiogenesis. Sci Rep. 3:14182013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kawamura M, Miyagawa S, Miki K, Saito A,
Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu
T, et al: Feasibility, safety, and therapeutic efficacy of human
induced pluripotent stem cell-derived cardiomyocyte sheets in a
porcine ischemic cardiomyopathy model. Circulation. 126(Suppl 1):
S29–S37. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kawamura M, Miyagawa S, Fukushima S, Saito
A, Miki K, Ito E, Sougawa N, Kawamura T, Daimon T, Shimizu T, et
al: Enhanced survival of transplanted human induced pluripotent
stem cell-derived cardiomyocytes by the combination of cell sheets
with the pedicled omental flap technique in a porcine heart.
Circulation. 128(Suppl 1): S87–S94. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Hibino N, Duncan DR, Nalbandian A, Yi T,
Qyang Y, Shinoka T and Breuer CK: Evaluation of the use of an
induced puripotent stem cell sheet for the construction of
tissue-engineered vascular grafts. J Thorac Cardiovasc Surg.
143:696–703. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tamama K, Kawasaki H, Kerpedjieva SS, Guan
J, Ganju RK and Sen CK: Differential roles of hypoxia inducible
factor subunits in multipotential stromal cells under hypoxic
condition. J Cell Biochem. 112:804–817. 2011. View Article : Google Scholar : PubMed/NCBI
|