1
|
Manfredi S, Lepage C, Hatem C, Coatmeur O,
Faivre J and Bouvier AM: Epidemiology and management of liver
metastases from colorectal cancer. Ann Surg. 244:254–259. 2006.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang S, Aurora AB, Johnson BA, Qi X,
McAnally J, Hill JA, Richardson JA, Bassel-Duby R and Olson EN: The
endothelial-specific microRNA miR-126 governs vascular integrity
and angiogenesis. Dev Cell. 15:261–271. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Saito Y, Friedman JM, Chihara Y, Egger G,
Chuang JC and Liang G: Epigenetic therapy upregulates the tumor
suppressor microRNA-126 and its host gene EGFL7 in human cancer
cells. Biochem Biophys Res Commun. 379:726–731. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Meister J and Schmidt MH: miR-126 and
miR-126*: New players in cancer. Scientific World Journal.
10:2090–2100. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li N, Li X, Huang S, Shen S and Wang X:
miR-126 inhibits colon cancer proliferation and invasion through
targeting IRS1, SLC7A5 and TOM1 gene. Zhong Nan Da Xue Xue Bao Yi
Xue Ban. 38:809–817. 2013.(In Chinese). PubMed/NCBI
|
10
|
Li Z, Li N, Wu M, Li X, Luo Z and Wang X:
Expression of miR-126 suppresses migration and invasion of colon
cancer cells by targeting CXCR4. Mol Cell Biochem. 381:233–242.
2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jia AY, Castillo-Martin M, Bonal DM,
Sánchez-Carbayo M, Silva JM and Cordon-Cardo C: MicroRNA-126
inhibits invasion in bladder cancer via regulation of ADAM9. Br J
Cancer. 110:2945–2954. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Guo C, Sah JF, Beard L, Willson JK,
Markowitz SD and Guda K: The noncoding RNA, miR-126, suppresses the
growth of neoplastic cells by targeting phosphatidylinositol
3-kinase signaling and is frequently lost in colon cancers. Genes
Chromosomes Cancer. 47:939–946. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Feng R, Chen X, Yu Y, Su L, Yu B, Li J,
Cai Q, Yan M, Liu B and Zhu Z: miR-126 functions as a tumour
suppressor in human gastric cancer. Cancer Lett. 298:50–63. 2010.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Png KJ, Halberg N, Yoshida M and Tavazoie
SF: A microRNA regulon that mediates endothelial recruitment and
metastasis by cancer cells. Nature. 481:190–194. 2012. View Article : Google Scholar
|
15
|
Long G, Wang F, Duan Q, Chen F, Yang S,
Gong W, Wang Y, Chen C and Wang DW: Human circulating microRNA-1
and microRNA-126 as potential novel indicators for acute myocardial
infarction. Int J Biol Sci. 8:811–818. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yin J, Bai Z, Song J, Yang Y, Wang J, Han
W, Zhang J, Meng H, Ma X, Yang Y, et al: Differential expression of
serum miR-126, miR-141 and miR-21 as novel biomarkers for early
detection of liver metastasis in colorectal cancer. Chin J Cancer
Res. 26:95–103. 2014.PubMed/NCBI
|
17
|
Zhang T, Lv C, Li L, Chen S, Liu S, Wang C
and Su B: Plasma miR-126 is a potential biomarker for early
prediction of type 2 diabetes mellitus in susceptible individuals.
Biomed Res Int. 2013:7616172013.PubMed/NCBI
|
18
|
Chen J and Huang XF: The signal pathways
in azoxymethane-induced colon cancer and preventive implications.
Cancer Biol Ther. 8:1313–1317. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vargas PA and Alberts DS: Primary
prevention of colorectal cancer through dietary modification.
Cancer. 70(Suppl 5): 1229–1235. 1992. View Article : Google Scholar : PubMed/NCBI
|
20
|
Leonardi T, Vanamala J, Taddeo SS,
Davidson LA, Murphy ME, Patil BS, Wang N, Carroll RJ, Chapkin RS,
Lupton JR, et al: Apigenin and naringenin suppress colon
carcinogenesis through the aberrant crypt stage in
azoxymethane-treated rats. Exp Biol Med (Maywood). 235:710–717.
2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Warren CA, Paulhill KJ, Davidson LA,
Lupton JR, Taddeo SS, Hong MY, Carroll RJ, Chapkin RS and Turner
ND: Quercetin may suppress rat aberrant crypt foci formation by
suppressing inflammatory mediators that influence proliferation and
apoptosis. J Nutr. 139:101–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vanamala J, Leonardi T, Patil BS, Taddeo
SS, Murphy ME, Pike LM, Chapkin RS, Lupton JR and Turner ND:
Suppression of colon carcinogenesis by bioactive compounds in
grapefruit. Carcinogenesis. 27:1257–1265. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chiou YS, Tsai ML, Nagabhushanam K, Wang
YJ, Wu CH, Ho CT and Pan MH: Pterostilbene is more potent than
resveratrol in preventing azoxymethane (AOM)-induced colon
tumorigenesis via activation of the NF-E2-related factor 2
(Nrf2)-mediated antioxidant signaling pathway. J Agric Food Chem.
59:2725–2733. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xiao H, Hao X, Simi B, Ju J, Jiang H,
Reddy BS and Yang CS: Green tea polyphenols inhibit colorectal
aberrant crypt foci (ACF) formation and prevent oncogenic changes
in dysplastic ACF in azoxymethane-treated F344 rats.
Carcinogenesis. 29:113–119. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Afaq F, Saleem M, Krueger CG, Reed JD and
Mukhtar H: Anthocyanin- and hydrolyzable tannin-rich pomegranate
fruit extract modulates MAPK and NF-kappaB pathways and inhibits
skin tumorigenesis in CD-1 mice. Int J Cancer. 113:423–433. 2005.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Malik A, Afaq F, Sarfaraz S, Adhami VM,
Syed DN and Mukhtar H: Pomegranate fruit juice for chemoprevention
and chemotherapy of prostate cancer. Proc Natl Acad Sci USA.
102:14813–14818. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Adams LS, Seeram NP, Aggarwal BB, Takada
Y, Sand D and Heber D: Pomegranate juice, total pomegranate
ellagitannins, and punicalagin suppress inflammatory cell signaling
in colon cancer cells. J Agric Food Chem. 54:980–985. 2006.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kasimsetty SG, Bialonska D, Reddy MK, Ma
G, Khan SI and Ferreira D: Colon cancer chemopreventive activities
of pomegranate ellagitannins and urolithins. J Agric Food Chem.
58:2180–2187. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Banerjee N, Kim H, Talcott S and
Mertens-Talcott S: Pomegranate polyphenolics suppressed
azoxymethane-induced colorectal aberrant crypt foci and
inflammation. Possible role of miR-126/VCAM-1 and
miR-126/PI3K/AKT/mTOR. Carcinogenesis. 34:2814–2822. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Luo J, Manning BD and Cantley LC:
Targeting the PI3K-Akt pathway in human cancer, rationale and
promise. Cancer Cell. 4:257–262. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Leystra AA, Deming DA, Zahm CD, Farhoud M,
Olson TJ, Hadac JN, Nettekoven LA, Albrecht DM, Clipson L, Sullivan
R, et al: Mice expressing activated PI3K rapidly develop advanced
colon cancer. Cancer Res. 72:2931–2936. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Harris TA, Yamakuchi M, Ferlito M, Mendell
JT and Lowenstein CJ: MicroRNA-126 regulates endothelial expression
of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA.
105:1516–1521. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Maurer CA, Friess H, Kretschmann B, Wildi
S, Müller C, Graber H, Schilling M and Büchler MW: Over-expression
of ICAM-1, VCAM-1 and ELAM-1 might influence tumor progression in
colorectal cancer. Int J Cancer. 79:76–81. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li XM, Wang AM, Zhang J and Yi H:
Down-regulation of miR-126 expression in colorectal cancer and its
clinical significance. Med Oncol. 28:1054–1057. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang XY, Wu MH, Liu F, Li Y, Li N, Li GY
and Shen SR: Differential miRNA expression and their target genes
between NGX6-positive and negative colon cancer cells. Mol Cell
Biochem. 345:283–290. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li N, Tang A, Huang S, Li Z, Li X, Shen S,
Ma J and Wang X: miR-126 suppresses colon cancer cell proliferation
and invasion via inhibiting RhoA/ROCK signaling pathway. Mol Cell
Biochem. 380:107–119. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Majka M, Janowska-Wieczorek A, Ratajczak
J, Kowalska MA, Vilaire G, Pan ZK, Honczarenko M, Marquez LA, Poncz
M and Ratajczak MZ: Stromal-derived factor 1 and thrombopoietin
regulate distinct aspects of human megakaryopoiesis. Blood.
96:4142–4151. 2000.PubMed/NCBI
|
38
|
Wang SC, Lin JK, Wang HS, Yang SH, Li AF
and Chang SC: Nuclear expression of CXCR4 is associated with
advanced colorectal cancer. Int J Colorectal Dis. 25:1185–1191.
2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kijowski J, Baj-Krzyworzeka M, Majka M,
Reca R, Marquez LA, Christofidou-Solomidou M, Janowska-Wieczorek A
and Ratajczak MZ: The SDF-1-CXCR4 axis stimulates VEGF secretion
and activates integrins but does not affect proliferation and
survival in lymphohematopoietic cells. Stem Cells. 19:453–466.
2001. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yasuoka H, Tsujimoto M, Yoshidome K,
Nakahara M, Kodama R, Sanke T and Nakamura Y: Cytoplasmic CXCR4
expression in breast cancer, Induction by nitric oxide and
correlation with lymph node metastasis and poor prognosis. BMC
Cancer. 8:3402008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kollmar O, Rupertus K, Scheuer C, Junker
B, Tilton B, Schilling MK and Menger MD: Stromal cell-derived
factor-1 promotes cell migration and tumor growth of colorectal
metastasis. Neoplasia. 9:862–870. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Heckmann D, Laufs S, Maier P, Zucknick M,
Giordano FA, Veldwijk MR, Eckstein V, Wenz F, Zeller WJ, Fruehauf
S, et al: A Lentiviral CXCR4 overexpression and knockdown model in
colorectal cancer cell lines reveals plerixafor-dependent
suppression of SDF-1α-induced migration and invasion. Onkologie.
34:502–508. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chang YW, Marlin JW, Chance TW and Jakobi
R: RhoA mediates cyclooxygenase-2 signaling to disrupt the
formation of adherens junctions and increase cell motility. Cancer
Res. 66:11700–11708. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Struckhoff AP, Rana MK and Worthylake RA:
RhoA can lead the way in tumor cell invasion and metastasis. Front
Biosci (Landmark Ed). 16:1915–1926. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cavallaro U and Christofori G: Cell
adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev
Cancer. 4:118–132. 2004. View
Article : Google Scholar : PubMed/NCBI
|
46
|
Jiang W, Wang Q, Chen S, Gao S, Song L,
Liu P and Huang W: Influenza A virus NS1 induces G0/G1 cell cycle
arrest by inhibiting the expression and activity of RhoA protein. J
Virol. 87:3039–3052. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Cortez MA and Calin GA: MicroRNA
identification in plasma and serum: A new tool to diagnose and
monitor diseases. Expert Opin Biol Ther. 9:703–711. 2009.
View Article : Google Scholar : PubMed/NCBI
|