Epigenetics in systemic lupus erythematosus (Review)
- Authors:
- Gong Xiao
- Xiaoxia Zuo
-
Affiliations: Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China - Published online on: December 11, 2015 https://doi.org/10.3892/br.2015.556
- Pages: 135-139
This article is mentioned in:
Abstract
Gualtierotti R, Biggioggero M, Penatti AE and Meroni PL: Updating on the pathogenesis of systemic lupus erythematosus. Autoimmun Rev. 10:3–7. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rahman A and Isenberg DA: Systemic lupus erythematosus. N Engl J Med. 358:929–939. 2008. View Article : Google Scholar : PubMed/NCBI | |
Harley IT, Kaufman KM, Langefeld CD, Harley JB and Kelly JA: Genetic susceptibility to SLE, New insights from fine mapping and genome-wide association studies. Nat Rev Genet. 10:285–290. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sestak AL, Fürnrohr BG, Harley JB, Merrill JT and Namjou B: The genetics of systemic lupus erythematosus and implications for targeted therapy. Ann Rheum Dis. 70((Suppl 1)): i37–i43. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mak A and Tay SH: Environmental factors toxicants and systemic lupus erythematosus. Int J Mol Sci. 15:16043–16056. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rigante D, Mazzoni MB and Esposito S: The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev. 13:96–102. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sparks JA and Costenbader KH: Genetics, environment, and gene-environment interactions in the development of systemic rheumatic diseases. Rheum Dis Clin North Am. 40:637–657. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zan H: Epigenetics in lupus. Autoimmunity. 47:213–214. 2014. View Article : Google Scholar : PubMed/NCBI | |
Richardson B: Impact of aging on DNA methylation. Ageing Res Rev. 2:245–261. 2003. View Article : Google Scholar : PubMed/NCBI | |
Egger G, Liang G, Aparicio A and Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 429:457–463. 2004. View Article : Google Scholar : PubMed/NCBI | |
Robertson KD: DNA methylation and human disease. Nat Rev Genet. 6:597–610. 2005. View Article : Google Scholar : PubMed/NCBI | |
Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S and Johnson M: Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33:1665–1673. 1990. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Kaplan M, Ray D, Ray D, Zacharek S, Gutsch D and Richardson B: Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum. 46:1282–1291. 2002. View Article : Google Scholar : PubMed/NCBI | |
Oelke K, Lu Q, Richardson D, Wu A, Deng C, Hanash S and Richardson B: Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum. 50:1850–1860. 2004. View Article : Google Scholar : PubMed/NCBI | |
Richardson B: Primer: E pigenetics of autoimmunity. Nat Clin Pract Rheumatol. 3:521–527. 2007. View Article : Google Scholar : PubMed/NCBI | |
Basu D, Liu Y, Wu A, Yarlagadda S, Gorelik GJ, Kaplan MJ, Hewagama A, Hinderer RC, Strickland FM and Richardson BC: Stimulatory and inhibitory killer Ig-like receptor molecules are expressed and functional on lupus T cells. J Immunol. 183:3481–3487. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lei W, Luo Y, Lei W, Luo Y, Yan K, Zhao S, Li Y, Qiu X, Zhou Y, Long H, et al: Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol. 38:369–374. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Wu A, Tesmer L, Ray D, Yousif N and Richardson B: Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol. 179:6352–6358. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, Gonzalez-Rivera T, Strickland F and Richardson B: Michigan Lupus Cohort. Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun. 41:60–71. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD and Sawalha AH: Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics. 6:593–601. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD, Merrill JT, McCune WJ and Sawalha AH: Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J Autoimmun. 43:78–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chung SA, Nititham J, Elboudwarej E, Quach HL, Taylor KE, Barcellos LF and Criswell LA: Genome-wide assessment of differential DNA methylation associated with autoantibody production in systemic lupus erythematosus. PLoS One. 10:e01298132015. View Article : Google Scholar : PubMed/NCBI | |
Chan RW, Jiang P, Peng X, Tam LS, Liao GJ, Li EK, Wong PC, Sun H, Chan KC, Chiu RW, et al: Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing. Proc Natl Acad Sci USA. 111:E5302–E5311. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jenuwein T and Allis CD: Translating the histone code. Science. 293:1074–1080. 2001. View Article : Google Scholar : PubMed/NCBI | |
Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, Berdasco M, Fraga MF, O'Hanlon TP, Rider LG, et al: Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20:170–179. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Song L, Maurer K, Petri MA and Sullivan KE: Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun. 11:124–133. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pieterse E, Hofstra J, Berden J, Herrmann M, Dieker J and van der Vlag J: Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin Exp Immunol. 179:68–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mamula MJ, Gee RJ, Elliott JI, Sette A, Southwood S, Jones PJ and Blier PR: Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J Biol Chem. 274:22321–22327. 1999. View Article : Google Scholar : PubMed/NCBI | |
Doyle HA, Aswad DW and Mamula MJ: Autoimmunity to isomerized histone H2B in systemic lupus erythematosus. Autoimmunity. 46:6–13. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu CL, Tangsombatvisit S, Rosenberg JM, Mandelbaum G, Gillespie EC, Gozani OP, Alizadeh AA and Utz PJ: Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res Ther. 14:R252012. View Article : Google Scholar : PubMed/NCBI | |
Apostolidis SA, Rauen T, Hedrich CM, Tsokos GC and Crispín JC: Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. J Biol Chem. 288:26775–26784. 2013. View Article : Google Scholar : PubMed/NCBI | |
White CA, Pone EJ, Lam T, Tat C, Hayama KL, Li G, Zan H and Casali P: Histone deacetylase inhibitors upregulate B cell microRNAs that silence AID and Blimp-1 expression for epigenetic modulation of antibody and autoantibody responses. J Immunol. 193:5933–5950. 2014. View Article : Google Scholar : PubMed/NCBI | |
Regna NL, Chafin CB, Hammond SE, Puthiyaveetil AG, Caudell DL and Reilly CM: Class I and II histone deacetylase inhibition by ITF2357 reduces SLE pathogenesis in vivo. Clin Immunol. 151:29–42. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Tang Q, Zhao M, Liang G, Wu H, Li D, Xie Y, Tan Y, Dai Y, Yung S, et al: The effect of mycophenolic acid on epigenetic modifications in lupus CD4+ T cells. Clin Immunol. 158:67–76. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mir AR: Moinuddin: G lyoxidation of histone proteins in autoimmune disorders. Clin Chim Acta. 450:25–30. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khan MA and Dixit K: Moinuddin,A rif Z and Alam K: Studies on peroxynitrite-modified H1 histone: Implications in systemic lupus erythematosus. Biochimie. 97:104–113. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alzolibani AA, Al Robaee AA, Al-Shobaili HA and Rasheed Z: 4-Hydroxy-2-nonenal modified histone-H2A: A possible antigenic stimulus for systemic lupus erythematosus autoantibodies. Cell Immunol. 284:154–162. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moran VA, Perera RJ and Khalil AM: Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 40:6391–6400. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ørom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, et al: Long noncoding RNAs with enhancer-like function in human cells. Cell. 143:46–58. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG, et al: Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA. 110:3387–3392. 2013. View Article : Google Scholar : PubMed/NCBI | |
Davis-Dusenbery BN and Hata A: Mechanisms of control of microRNA biogenesis. J Biochem. 148:381–392. 2010.PubMed/NCBI | |
Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM and Yin YB: Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 16:939–946. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, et al: MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60:1065–1075. 2009. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, Kamen DL, Gilkeson GS, Jacob CO, Scofield RH, et al: MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet. 9:e10033362013. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, Luo X, Huang X, Li J, Chen S, et al: MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum. 62:3425–3435. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chauhan SK, Singh VV, Rai R, Rai M and Rai G: Differential microRNA profile and post-transcriptional regulation exist in systemic lupus erythematosus patients with distinct autoantibody specificities. J Clin Immunol. 34:491–503. 2014. View Article : Google Scholar : PubMed/NCBI | |
Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, Bruner GR, Harley JB and Ojwang JO: Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 5:e103442010. View Article : Google Scholar : PubMed/NCBI | |
Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y and Shen N: MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 184:6773–6781. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, Yin H and Lu Q: MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 63:1376–1386. 2011. View Article : Google Scholar : PubMed/NCBI | |
Garchow BG, Bartulos Encinas O, Leung YT, Tsao PY, Eisenberg RA, Caricchio R, Obad S, Petri A, Kauppinen S and Kiriakidou M: Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med. 3:605–615. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stagakis E, Bertsias G, Verginis P, Nakou M, Hatziapostolou M, Kritikos H, Iliopoulos D and Boumpas DT: Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis, miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis. 70:1496–1506. 2011. View Article : Google Scholar : PubMed/NCBI | |
Perkel JM: Visiting ‘noncodarnia’. Biotechniques. 54(301): 303–304. 2013. | |
Kaikkonen MU, Lam MT and Glass CK: Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 90:430–440. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fitzgerald KA and Caffrey DR: Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol. 26:140–146. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu CC, Kao AH, Manzi S and Ahearn JM: Biomarkers in systemic lupus erythematosus, Challenges and prospects for the future. Ther Adv Musculoskelet Dis. 5:210–233. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhang F, Ma J, Zhang X, Wu L, Qu B, Xia S, Chen S, Tang Y and Shen N: Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Res Ther. 17:1312015. View Article : Google Scholar : PubMed/NCBI | |
Haywood ME, Rose SJ, Horswell S, Lees MJ, Fu G, Walport MJ and Morley BJ: Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun. 7:250–263. 2006. View Article : Google Scholar : PubMed/NCBI | |
Suarez-Gestal M, Calaza M, Endreffy E, Pullmann R, Ordi-Ros J, Sebastiani GD, Ruzickova S, Santos Jose M, Papasteriades C, Marchini M, et al: European Consortium of SLE DNA Collections: Replication of recently identified systemic lupus erythematosus genetic associations: A case-control study. Arthritis Res Ther. 11:R692009. View Article : Google Scholar : PubMed/NCBI | |
Kino T, Hurt DE, Ichijo T, Nader N and Chrousos GP: Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 3:ra82010. View Article : Google Scholar : PubMed/NCBI | |
Yacqub-Usman K, Pickard MR and Williams GT: Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate. 75:693–705. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gomez JA, Wapinski OL, Yang YW, Bureau JF, Gopinath S, Monack DM, Chang HY, Brahic M and Kirkegaard K: The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 152:743–754. 2013. View Article : Google Scholar : PubMed/NCBI | |
Masutani K, Taniguchi M, Nakashima H, et al: Upregulated interleukin-4 production by peripheral T-helper cells in idiopathic membranous nephropathy. Nephrol Dial Transplant. 19:580–586. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chan RW, Lai FM, Li EK, et al: Intrarenal cytokine gene expression in lupus nephritis. Ann Rheum Dis. 66:886–892. 2007. View Article : Google Scholar : PubMed/NCBI |