1
|
Park CG, Lee SY, Kandala G, Lee SY and
Choi Y: A novel gene product that couples TCR signaling to
Fas(CD95) expression in activation-induced cell death. Immunity.
4:583–591. 1996. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kuske MD and Johnson JP: Assignment of the
human PHLDA1 gene to chromosome 12q15 by radiation hybrid mapping.
Cytogenet Cell Genet. 89:12000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Frank D, Mendelsohn CL, Ciccone E,
Svensson K, Ohlsson R and Tycko B: A novel pleckstrin
homology-related gene family defined by Ipl/Tssc3, TDAG51, and
Tih1: Tissue-specific expression, chromosomal location, and
parental imprinting. Mamm Genome. 10:1150–1159. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gomes I, Xiong W, Miki T and Rosner MR: A
proline- and glutamine-rich protein promotes apoptosis in neuronal
cells. J Neurochem. 73:612–622. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lemmon MA, Ferguson KM and Abrams CS:
Pleckstrin homology domains and the cytoskeleton. FEBS Lett.
513:71–76. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xu Q, Bateman A, Finn RD, Abdubek P,
Astakhova T, Axelrod HL, Bakolitsa C, Carlton D, Chen C, Chiu HJ,
et al: Bacterial pleckstrin homology domains: A prokaryotic origin
for the PH domain. J Mol Biol. 396:31–46. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lemmon MA and Ferguson KM:
Signal-dependent membrane targeting by pleckstrin homology (PH)
domains. Biochem J. 350:1–18. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Scheffzek K and Welti S: Pleckstrin
homology (PH) like domains - versatile modules in protein-protein
interaction platforms. FEBS Lett. 586:2662–2673. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Williamson MP: The structure and function
of proline-rich regions in proteins. Biochem J. 297:249–260. 1994.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Butland SL, Devon RS, Huang Y, Mead CL,
Meynert AM, Neal SJ, Lee SS, Wilkinson A, Yang GS, Yuen MM, et al:
CAG-encoded polyglutamine length polymorphism in the human genome.
BMC Genomics. 8:1262007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu CR and Cheng TH: Allele-selective
suppression of mutant genes in polyglutamine diseases. J
Neurogenet. 29:41–49. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hossain GS, van Thienen JV, Werstuck GH,
Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E,
et al: TDAG51 is induced by homocysteine, promotes
detachment-mediated programmed cell death, and contributes to the
cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol
Chem. 278:30317–30327. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hinz T, Flindt S, Marx A, Janssen O and
Kabelitz D: Inhibition of protein synthesis by the T cell
receptor-inducible human TDAG51 gene product. Cell Signal.
13:345–352. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Neef R, Kuske MA, Pröls E and Johnson JP:
Identification of the human PHLDA1/TDAG51 gene: Down-regulation in
metastatic melanoma contributes to apoptosis resistance and growth
deregulation. Cancer Res. 62:5920–5929. 2002.PubMed/NCBI
|
15
|
Nagai MA, Fregnani JH, Netto MM, Brentani
MM and Soares FA: Down-regulation of PHLDA1 gene expression is
associated with breast cancer progression. Breast Cancer Res Treat.
106:49–56. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao P, Lu Y and Liu L: Correlation of
decreased expression of PHLDA1 protein with malignant phenotype of
gastric adenocarcinoma. Int J Clin Exp Pathol. 8:5230–5235.
2015.PubMed/NCBI
|
17
|
Sakthianandeswaren A, Christie M,
D'Andreti C, Tsui C, Jorissen RN, Li S, Fleming NI, Gibbs P, Lipton
L, Malaterre J, et al: PHLDA1 expression marks the putative
epithelial stem cells and contributes to intestinal tumorigenesis.
Cancer Res. 71:3709–3719. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C,
Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, et al:
Broad targeting of resistance to apoptosis in cancer. Semin Cancer
Biol. 35:S78–S103. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Rho J, Gong S, Kim N and Choi Y: TDAG51 is
not essential for Fas/CD95 regulation and apoptosis in vivo. Mol
Cell Biol. 21:8365–8370. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Oberg HH, Sipos B, Kalthoff H, Janssen O
and Kabelitz D: Regulation of T-cell death-associated gene 51
(TDAG51) expression in human T-cells. Cell Death Differ.
11:674–684. 2004.PubMed/NCBI
|
21
|
Wang R, Zhang L, Yin D, Mufson RA and Shi
Y: Protein kinase C regulates Fas (CD95/APO-1) expression. J
Immunol. 161:2201–2207. 1998.PubMed/NCBI
|
22
|
Joo JH, Liao G, Collins JB, Grissom SF and
Jetten AM: Farnesol-induced apoptosis in human lung carcinoma cells
is coupled to the endoplasmic reticulum stress response. Cancer
Res. 67:7929–7936. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Carlisle RE, Heffernan A, Brimble E, Liu
L, Jerome D, Collins CA, Mohammed-Ali Z, Margetts PJ, Austin RC and
Dickhout JG: TDAG51 mediates epithelial-to-mesenchymal transition
in human proximal tubular epithelium. Am J Physiol Renal Physiol.
303:F467–F481. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shang Y, Cai X and Fan D: Roles of
epithelial-mesenchymal transition in cancer drug resistance. Curr
Cancer Drug Targets. 13:915–929. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pasquier J, Abu-Kaoud N, Al Thani H and
Rafii A: Epithelial to Mesenchymal Transition in a Clinical
Perspective. J Oncol. 2015:7921822015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Moad AI, Muhammad TS, Oon CE and Tan ML:
Rapamycin induces apoptosis when autophagy is inhibited in T-47D
mammary cells and both processes are regulated by Phlda1. Cell
Biochem Biophys. 66:567–587. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hayashida N, Inouye S, Fujimoto M, Tanaka
Y, Izu H, Takaki E, Ichikawa H, Rho J and Nakai A: A novel
HSF1-mediated death pathway that is suppressed by heat shock
proteins. EMBO J. 25:4773–4783. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu F, Xu ZL, Qian XJ, Qiu WY and Huang H:
Expression of Hsf1, Hsf2, and Phlda1 in cells undergoing
cryptorchid-induced apoptosis in rat testes. Mol Reprod Dev.
78:283–291. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Toyoshima Y, Karas M, Yakar S, Dupont J,
Lee Helman and Le Roith D: TDAG51 mediates the effects of
insulin-like growth factor I (IGF-I) on cell survival. J Biol Chem.
279:25898–25904. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu S, Walenkamp MJ, Lankester A,
Bidlingmaier M, Wit JM and De Luca F: Growth hormone and
insulin-like growth factor I insensitivity of fibroblasts isolated
from a patient with an IκBα mutation. J Clin Endocrinol Metab.
95:1220–1228. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Boro A, Prêtre K, Rechfeld F, Thalhammer
V, Oesch S, Wachtel M, Schäfer BW and Niggli FK: Small-molecule
screen identifies modulators of EWS/FLI1 target gene expression and
cell survival in Ewing's sarcoma. Int J Cancer. 131:2153–2164.
2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sohn EJ, Li H, Reidy K, Beers LF,
Christensen BL and Lee SB: EWS/FLI1 oncogene activates caspase 3
transcription and triggers apoptosis in vivo. Cancer Res.
70:1154–1163. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Murata T, Sato T, Kamoda T, Moriyama H,
Kumazawa Y and Hanada N: Differential susceptibility to hydrogen
sulfide-induced apoptosis between PHLDA1-overexpressing oral cancer
cell lines and oral keratinocytes: Role of PHLDA1 as an apoptosis
suppressor. Exp Cell Res. 320:247–257. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Johnson EO, Chang KH, de Pablo Y, Ghosh S,
Mehta R, Badve S and Shah K: PHLDA1 is a crucial negative regulator
and effector of Aurora A kinase in breast cancer. J Cell Sci.
124:2711–2722. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li G, Wang X, Hibshoosh H, Jin C and
Halmos B: Modulation of ErbB2 blockade in ErbB2-positive cancers:
The role of ErbB2 Mutations and PHLDA1. PLoS One. 9:e1063492014.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Coutinho-Camillo CM, Lourenço SV, Nonogaki
S, Vartanian JG, Nagai MA, Kowalski LP and Soares FA: Expression of
PAR-4 and PHLDA1 is prognostic for overall and disease-free
survival in oral squamous cell carcinomas. Virchows Arch.
463:31–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chiu ST, Hsieh FJ, Chen SW, Chen CL, Shu
HF and Li H: Clinicopathologic correlation of up-regulated genes
identified using cDNA microarray and real-time reverse
transcription-PCR in human colorectal cancer. Cancer Epidemiol
Biomarkers Prev. 14:437–443. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ren L, Mendoza A, Zhu J, Briggs JW, Halsey
C, Hong ES, Burkett SS, Morrow J, Lizardo MM, Osborne T, et al:
Characterization of the metastatic phenotype of a panel of
established osteosarcoma cells. Oncotarget. 6:29469–29481.
2015.PubMed/NCBI
|
40
|
Marchiori AC, Casolari DA and Nagai MA:
Transcriptional up-regulation of PHLDA1 by 17beta-estradiol in
MCF-7 breast cancer cells. Braz J Med Biol Res. 41:579–582. 2008.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Kastrati I, Canestrari E and Frasor J:
PHLDA1 expression is controlled by an estrogen
receptor-NFκB-miR-181 regulatory loop and is essential for
formation of ER+ mammospheres. Oncogene. 34:2309–2316. 2015.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Oberst MD, Beberman SJ, Zhao L, Yin JJ,
Ward Y and Kelly K: TDAG51 is an ERK signaling target that opposes
ERK-mediated HME16C mammary epithelial cell transformation. BMC
Cancer. 8:189–204. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ohyama M, Terunuma A, Tock CL, Radonovich
MF, Pise-Masison CA, Hopping SB, Brady JN, Udey MC and Vogel JC:
Characterization and isolation of stem cell-enriched human hair
follicle bulge cells. J Clin Invest. 116:249–260. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sellheyer K and Krahl D: PHLDA1 (TDAG51)
is a follicular stem cell marker and differentiates between
morphoeic basal cell carcinoma and desmoplastic trichoepithelioma.
Br J Dermatol. 164:141–147. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Guezguez A, Paré F, Benoit YD, Basora N
and Beaulieu JF: Modulation of stemness in a human normal
intestinal epithelial crypt cell line by activation of the WNT
signaling pathway. Exp Cell Res. 322:355–364. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Murohashi M, Hinohara K, Kuroda M, Isagawa
T, Tsuji S, Kobayashi S, Umezawa K, Tojo A, Aburatani H and Gotoh
N: Gene set enrichment analysis provides insight into novel
signalling pathways in breast cancer stem cells. Br J Cancer.
102:206–212. 2010. View Article : Google Scholar : PubMed/NCBI
|