1
|
Lai K, Xu L, Jin C, Wu K, Tian Z, Huang C,
Zhong X and Ye H: Technetium-99 conjugated with methylene
diphosphonate (99Tc-MDP) inhibits experimental choroidal
neovascularization in vivo and VEGF-induced cell migration and tube
formation in vitro. Invest Ophthalmol Vis Sci. 52:5702–5712. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Choi JK, Kim SW, Kim DS, Lee JY, Lee S, Oh
HM, Ha YS, Yoo J, Park PH, Shin TY, et al: Oleanolic acid acetate
inhibits rheumatoid arthritis by modulating T cell immune responses
and matrix-degrading enzymes. Toxicol Appl Pharmacol. 290:1–9.
2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Favalli EG, Becciolini A and Biggioggero
M: Structural integrity versus radiographic progression in
rheumatoid arthritis. RMD Open. 1(Suppl 1): e0000642015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Meednu N, Zhang H, Owen T, Sun W, Wang V,
Cistrone C, Rangel-Moreno J, Xing L, Med B and Anolik JH: A link
between B cells and bone erosion in rheumatoid arthritis: Receptor
activator of nuclear factor kappa-B ligand production by memory B
cells. Arthritis Rheumatol. Nov 10–2015.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
5
|
Owens GM: Optimizing Rheumatoid Arthritis
Therapy: Using Objective Measures of Disease Activity to Guide
Treatment. Am Health Drug Benefits. 8:354–360. 2015.PubMed/NCBI
|
6
|
Magyari L, Varszegi D, Kovesdi E, Sarlos
P, Farago B, Javorhazy A, Sumegi K, Banfai Z and Melegh B:
Interleukins and interleukin receptors in rheumatoid arthritis:
Research, diagnostics and clinical implications. World J Orthop.
5:516–536. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rosado-de-Castro PH, de Lopes Souza SA,
Alexandre D, da Barbosa Fonseca LM and Gutfilen B: Rheumatoid
arthritis: Nuclear Medicine state-of-the-art imaging. World J
Orthop. 5:312–318. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Al-Nahain A, Jahan R and Rahmatullah M:
Zingiber officinale: A Potential Plant against Rheumatoid
Arthritis. Arthritis. 2014:1590892014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Scarno A, Perrotta FM, Cardini F, Carboni
A, Annibali G, Lubrano E and Spadaro A: Beyond the joint:
Subclinical atherosclerosis in rheumatoid arthritis. World J
Orthop. 5:328–335. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sonomoto K, Yamaoka K and Tanaka Y: An
approach to bone and cartilage repair of rheumatoid arthritis by
mesenchymal stem cells. J UOEH. 36:141–146. 2014.(In Japanese).
View Article : Google Scholar : PubMed/NCBI
|
11
|
Su D, Shen M, Gu B, Wang X, Wang D, Li X
and Sun L: 99 Tc-methylene diphosphonate improves rheumatoid
arthritis disease activity by increasing the frequency of
peripheral γδ T cells and CD4+ CD25+
Foxp3+ Tregs. Int J Rheum Dis. Jan 28–2014.(Epub ahead
of print). View Article : Google Scholar : PubMed/NCBI
|
12
|
Ji Y, Huo X and Zhang H: Technetium 99Tc
methylenediphosphonate inhibits osteoclast formation from PBMCs in
patients with rheumatoid arthritis. Zhong Nan Da Xue Xue Bao Yi Xue
Ban. 34:684–688. 2009.(In Chinese). PubMed/NCBI
|
13
|
Gong W, Dou H, Liu X, Sun L and Hou Y:
Technetium-99 conjugated with methylene diphosphonate inhibits
receptor activator of nuclear factor-κB ligand-induced
osteoclastogenesis. Clin Exp Pharmacol Physiol. 39:886–893. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang A, Yu L and Shen L: Effect of
technetium-99 conjugated with methylene diphosphonate on IgM-RF,
IgG-RF and IgA-RF. J Huazhong Univ Sci Technolog Med Sci.
23:266–268. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu YG, Ma QL and Liu GF: Effect of
99Tc-MDP on cytokine production by peripheral blood mononuclear
cells of patients with rheumatoid arthritis. Hunan Yi Ke Da Xue Xue
Bao. 27:173–175. 2002.(In Chinese). PubMed/NCBI
|
16
|
Wong TY, Ohno-Matsui K, Leveziel N, Holz
FG, Lai TY, Yu HG, Lanzetta P, Chen Y and Tufail A: Myopic
choroidal neovascularisation: Current concepts and update on
clinical management. Br J Ophthalmol. 99:289–296. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li T, Aredo B, Zhang K, Zhong X, Pulido
JS, Wang S, He YG, Huang X, Brekken RA and Ufret-Vincenty RL:
Phosphatidylserine (PS) Is Exposed in Choroidal Neovascular
Endothelium: PS-Targeting Antibodies Inhibit Choroidal Angiogenesis
In Vivo and Ex Vivo. Invest Ophthalmol Vis Sci. 56:7137–7145. 2015.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Weber ML and Heier JS: Choroidal
Neovascularization Secondary to Myopia, Infection and Inflammation.
Dev Ophthalmol. 55:167–175. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nagai N, Ju M, Izumi-Nagai K, Robbie SJ,
Bainbridge JW, Gale DC, Pierre E, Krauss AH, Adamson P, Shima DT,
et al: Novel CCR3 Antagonists Are Effective Mono- and Combination
Inhibitors of Choroidal Neovascular Growth and Vascular
Permeability. Am J Pathol. 185:2534–2549. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Baxter SL, Pistilli M, Pujari SS,
Liesegang TL, Suhler EB, Thorne JE, Foster CS, Jabs DA, Levy-Clarke
GA, Nussenblatt RB, et al: Risk of choroidal neovascularization
among the uveitides. Am J Ophthalmol. 156:468–477.e2. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Bahn RS: Clinical review 157:
Pathophysiology of Graves' ophthalmopathy: the cycle of disease. J
Clin Endocrinol Metab. 88:1939–1946. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wei H, Guan M, Qin Y, Xie C, Fu X, Gao F
and Xue Y: Circulating levels of miR-146a and IL-17 are
significantly correlated with the clinical activity of Graves'
ophthalmopathy. Endocr J. 61:1087–1092. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hahn E, Laperriere N, Millar BA,
Oestreicher J, McGowan H, Krema H, Gill H, DeAngelis D, Hurwitz J,
Tucker N, et al: Orbital radiation therapy for Graves'
ophthalmopathy: Measuring clinical efficacy and impact. Pract
Radiat Oncol. 4:233–239. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bartley GB, Fatourechi V, Kadrmas EF,
Jacobsen SJ, Ilstrup DM, Garrity JA and Gorman CA: The incidence of
Graves' ophthalmopathy in Olmsted County, Minnesota. Am J
Ophthalmol. 120:511–517. 1995. View Article : Google Scholar : PubMed/NCBI
|
25
|
Burch HB and Wartofsky L: Graves'
ophthalmopathy: Current concepts regarding pathogenesis and
management. Endocr Rev. 14:747–793. 1993. View Article : Google Scholar : PubMed/NCBI
|
26
|
Perros P, Crombie AL and Kendall-Taylor P:
Natural history of thyroid associated ophthalmopathy. Clin
Endocrinol (Oxf). 42:45–50. 1995. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zang S, Ponto KA and Kahaly GJ: Clinical
review: Intravenous glucocorticoids for Graves' orbitopathy:
efficacy and morbidity. J Clin Endocrinol Metab. 96:320–332. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Prummel MF and Wiersinga WM:
Immunomodulatory treatment of Graves' ophthalmopathy. Thyroid.
8:545–548. 1998. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mou P, Jiang LH, Zhang Y, Li YZ, Lou H,
Zeng CC, Wang QH, Cheng JW and Wei RL: Common Immunosuppressive
Monotherapy for Graves' Ophthalmopathy: A Meta-Analysis. PLoS One.
10:e01395442015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yan SX, Wang Y, Peng GJ, Lu XP and Fu Y:
Effects of technetium-99 methylenediphosphonate on cytokine-induced
activation of retro-ocular fibroblasts from patients with Graves'
ophthalmopathy. Nucl Med Commun. 32:142–146. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pan W, Tan T, Wang Q and Zheng J:
Treatment of patients with Graves' ophthalmopathy by
immunosuppressive agent and 99Tc-MDP. Sheng Wu Yi Xue Gong Cheng
Xue Za Zhi. 19:300–301, 323. 2002.(In Chinese). PubMed/NCBI
|