1
|
Drappatz J, Schiff D, Kesari S, Norden AD
and Wen PY: Medical management of brain tumor patients. Neurol
Clin. 25:1035–1071, ix. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cahill CM, Waterman WR, Xie Y, Auron PE
and Calderwood SK: Transcriptional repression of the prointerleukin
1beta gene by heat shock factor 1. J Biol Chem. 271:24874–24879.
1996.PubMed/NCBI
|
3
|
Chatterjee S, Premachandran S, Sharma D,
Bagewadikar RS and Poduval TB: Therapeutic treatment with
L-arginine rescues mice from heat stroke-induced death:
Physiological and molecular mechanisms. Shock. 24:341–347. 2005.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Lan F, Yue X, Han L, Yuan X, Shi Z, Huang
K, Yang Y, Zou J, Zhang J, Jiang T, et al: Antitumor effect of
aspirin in glioblastoma cells by modulation of β-catenin/T-cell
factor-mediated transcriptional activity. J Neurosurg. 115:780–788.
2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ahmed R, Oborski MJ, Hwang M, Lieberman FS
and Mountz JM: Malignant gliomas: Current perspectives in
diagnosis, treatment, and early response assessment using advanced
quantitative imaging methods. Cancer Manag Res. 6:149–170.
2014.PubMed/NCBI
|
6
|
Huse JT and Holland EC: Targeting brain
cancer: Advances in the molecular pathology of malignant glioma and
medulloblastoma. Nat Rev Cancer. 10:319–331. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nakada M, Nakada S, Demuth T, Tran NL,
Hoelzinger DB and Berens ME: Molecular targets of glioma invasion.
Cell Mol Life Sci. 64:458–478. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Phillips HS, Kharbanda S, Chen R, Forrest
WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, et
al: Molecular subclasses of high-grade glioma predict prognosis,
delineate a pattern of disease progression, and resemble stages in
neurogenesis. Cancer Cell. 9:157–173. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Louis DN, Holland EC and Cairncross JG:
Glioma classification: A molecular reappraisal. Am J Pathol.
159:779–786. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang RP, Fan Y, Hossain MZ, Peng A, Zeng
ZL and Boynton AL: Reversion of the neoplastic phenotype of human
glioblastoma cells by connexin 43 (cx43). Cancer Res. 58:5089–5096.
1998.PubMed/NCBI
|
11
|
Soroceanu L, Manning TJ Jr and Sontheimer
H: Reduced expression of connexin-43 and functional gap junction
coupling in human gliomas. Glia. 33:107–117. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pu P, Xia Z, Yu S and Huang Q: Altered
expression of Cx43 in astrocytic tumors. Clin Neurol Neurosurg.
107:49–54. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mesnil M, Crespin S, Avanzo JL and
Zaidan-Dagli ML: Defective gap junctional intercellular
communication in the carcinogenic process. Biochim Biophys Acta.
1719:125–145. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Honn KV, Bockman RS and Marnett LJ:
Prostaglandins and cancer: A review of tumor initiation through
tumor metastasis. Prostaglandins. 21:833–864. 1981. View Article : Google Scholar : PubMed/NCBI
|
15
|
Levine L: Arachidonic acid transformation
and tumor production. Adv Cancer Res. 35:49–79. 1981. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bockman RS: Prostaglandins in cancer: A
review. Cancer Invest. 1:485–493. 1983. View Article : Google Scholar : PubMed/NCBI
|
17
|
Weissmann G: Aspirin. Sci Am. 264:84–90.
1991. View Article : Google Scholar : PubMed/NCBI
|
18
|
Vane JR: Inhibition of prostaglandin
synthesis as a mechanism of action for aspirin-like drugs. Nat New
Biol. 231:232–235. 1971. View Article : Google Scholar : PubMed/NCBI
|
19
|
Coussens LM, Zitvogel L and Palucka AK:
Neutralizing tumor-promoting chronic inflammation: A magic bullet?
Science. 339:286–291. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mantovani A, Allavena P, Sica A and
Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Rakoff-Nahoum S and Medzhitov R: Toll-like
receptors and cancer. Nat Rev Cancer. 9:57–63. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Balkwill F, Charles KA and Mantovani A:
Smoldering and polarized inflammation in the initiation and
promotion of malignant disease. Cancer Cell. 7:211–217. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang D and Dubois RN: Eicosanoids and
cancer. Nat Rev Cancer. 10:181–193. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dannenberg AJ and Subbaramaiah K:
Targeting cyclooxygenase-2 in human neoplasia: Rationale and
promise. Cancer Cell. 4:431–436. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Castelli MG, Butti G, Chiabrando C, Cozzi
E, Fanelli R, Gaetani P, Silvani V and Paoletti P: Arachidonic acid
metabolic profiles in human meningiomas and gliomas. J Neurooncol.
5:369–375. 1987. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nagy JI and Rash JE: Connexins and gap
junctions of astrocytes and oligodendrocytes in the CNS. Brain Res
Brain Res Rev. 32:29–44. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gutnick MJ, Connors BW and Ransom BR:
Dye-coupling between glial cells in the guinea pig neocortical
slice. Brain Res. 213:486–492. 1981. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kettenmann H and Ransom BR: Electrical
coupling between astrocytes and between oligodendrocytes studied in
mammalian cell cultures. Glia. 1:64–73. 1988. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dermietzel R, Traub O, Hwang TK, Beyer E,
Bennett MVL, Spray DC and Willecke K: Differential expression of
three gap junction proteins in developing and mature brain tissues.
Proc Natl Acad Sci USA. 86:10148–10152. 1989. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yamamoto T, Ochalski A, Hertzberg EL and
Nagy JI: On the organization of astrocytic gap junctions in rat
brain as suggested by LM and EM immunohistochemistry of connexin43
expression. J Comp Neurol. 302:853–883. 1990. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kumar NM and Gilula NB: Cloning and
characterization of human and rat liver cDNAs coding for a gap
junction protein. J Cell Biol. 103:767–776. 1986. View Article : Google Scholar : PubMed/NCBI
|
32
|
Paul DL: Molecular cloning of cDNA for rat
liver gap junction protein. J Cell Biol. 103:123–134. 1986.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Beyer EC, Paul DL and Goodenough DA:
Connexin43: A protein from rat heart homologous to a gap junction
protein from liver. J Cell Biol. 105:2621–2629. 1987. View Article : Google Scholar : PubMed/NCBI
|
34
|
Naus CC, Belliveau DJ and Bechberger JF:
Regional differences in connexin32 and connexin43 messenger RNAs in
rat brain. Neurosci Lett. 111:297–302. 1990. View Article : Google Scholar : PubMed/NCBI
|
35
|
Naus CC, Bechberger JF, Caveney S and
Wilson JX: Expression of gap junction genes in astrocytes and C6
glioma cells. Neurosci Lett. 126:33–36. 1991. View Article : Google Scholar : PubMed/NCBI
|
36
|
Belliveau DJ, Kidder GM and Naus CCG:
Expression of gap junction genes during postnatal neural
development. Dev Genet. 12:308–317. 1991. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bodenstine TM, Vaidya KS, Ismail A, Beck
BH, Cook LM, Diers AR, Landar A and Welch DR: Homotypic gap
junctional communication associated with metastasis suppression
increases with PKA activity and is unaffected by PI3K inhibition.
Cancer Res. 70:10002–10011. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bodenstine TM, Vaidya KS, Ismail A, Beck
BH, Diers AR, Edmonds MD, Kirsammer GT, Landar A and Welch DR:
Subsets of ATP-sensitive potassium channel (KATP) inhibitors
increase gap junctional intercellular communication in metastatic
cancer cell lines independent of SUR expression. FEBS Lett.
586:27–31. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Saunders MM, Seraj MJ, Li Z, Zhou Z,
Winter CR, Welch DR and Donahue HJ: Breast cancer metastatic
potential correlates with a breakdown in homospecific and
heterospecific gap junctional intercellular communication. Cancer
Res. 61:1765–1767. 2001.PubMed/NCBI
|
40
|
Kapoor P, Saunders MM, Li Z, Zhou Z,
Sheaffer N, Kunze EL, Samant RS, Welch DR and Donahue HJ: Breast
cancer metastatic potential: correlation with increased heterotypic
gap junctional intercellular communication between breast cancer
cells and osteoblastic cells. Int J Cancer. 111:693–697. 2004.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Li Z, Zhou Z, Welch DR and Donahue HJ:
Expressing connexin 43 in breast cancer cells reduces their
metastasis to lungs. Clin Exp Metastasis. 25:893–901. 2008.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhu D, Caveney S, Kidder GM and Naus CC:
Transfection of C6 glioma cells with connexin 43 cDNA: Analysis of
expression, intercellular coupling, and cell proliferation. Proc
Natl Acad Sci USA. 88:1883–1887. 1991. View Article : Google Scholar : PubMed/NCBI
|
43
|
Martin W, Zempel G, Hülser D and Willecke
K: Growth inhibition of oncogene-transformed rat fibroblasts by
cocultured normal cells: Relevance of metabolic cooperation
mediated by gap junctions. Cancer Res. 51:5348–5351.
1991.PubMed/NCBI
|