1
|
Susarla R, Gonzalez AM, Watkinson JC and
Eggo MC: Expression of receptors for VEGFs on normal human thyroid
follicular cells and their role in follicle formation. J Cell
Physiol. 227:1992–2002. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bernier-Valentin F, Trouttet-Masson S,
Rabilloud R, Selmi-Ruby S and Rousset B: Three-dimensional
organization of thyroid cells into follicle structures is a pivotal
factor in the control of sodium/iodide symporter expression.
Endocrinology. 147:2035–2042. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huang H, Shi Y, Lin L, Li L, Lin X, Li X
and Xu D: Inhibition of thyroid-restricted genes by follicular
thyroglobulin involves iodinated degree. J Cell Biochem.
112:971–977. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tonoli H, Flachon V, Audebet C, Callé A,
Jarry-Guichard T, Statuto M, Rousset B and Munari-Silem Y:
Formation of three-dimensional thyroid follicle-like structures by
polarized FRT cells made communication competent by transfection
and stable expression of the connexin-32 gene. Endocrinology.
141:1403–1413. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Di Jeso B and Arvan P: Thyroglobulin from
molecular and cellular biology to clinical endocrinology. Endocr
Rev. 37:2–36. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ishido Y, Luo Y, Yoshihara A, Hayashi M,
Yoshida A, Hisatome I and Suzuki K: Follicular thyroglobulin
enhances gene expression necessary for thyroid hormone secretion.
Endocr J. 62:1007–1015. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hennemann G, Vos RA, de Jong M, Krenning
EP and Docter R: Decreased peripheral 3,5,3′-triiodothyronine (T3)
production from thyroxine (T4): A syndrome of impaired thyroid
hormone activation due to transport inhibition of T4- into
T3-producing tissues. J Clin Endocrinol Metab. 77:1431–1435. 1993.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Miot F, Dupuy C, Dumont J and Rousset B:
Thyroid hormone synthesis and secretion. Endotext. De Groot LJ,
Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch
C, McLachlan R, New M, Rebar R, Singer F, Vinik A and Weickert MO:
MDText.com, Inc. (South Dartmouth, MA). 2000.
|
9
|
Koibuchi N: Molecular mechanisms of
thyroid hormone synthesis and secretion. Nihon Rinsho.
70:1844–1848. 2012.(In Japanese). PubMed/NCBI
|
10
|
Vickers AE, Heale J, Sinclair JR, Morris
S, Rowe JM and Fisher RL: Thyroid organotypic rat and human
cultures used to investigate drug effects on thyroid function,
hormone synthesis and release pathways. Toxicol Appl Pharmacol.
260:81–88. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Massart C, Hoste C, Virion A, Ruf J,
Dumont JE and Van Sande J: Cell biology of
H2O2 generation in the thyroid: investigation
of the control of dual oxidases (DUOX) activity in intact ex vivo
thyroid tissue and cell lines. Mol Cell Endocrinol. 343:32–44.
2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Corvilain B, Laurent E, Lecomte M,
Vansande J and Dumont JE: Role of the cyclic adenosine
3′,3′-monophosphate and the phosphatidylinositol-Ca2+
cascades in mediating the effects of thyrotropin and iodide on
hormone synthesis and secretion in human thyroid slices. J Clin
Endocrinol Metab. 79:152–159. 1994. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li W, Xu Z, Hong J and Xu Y: Expression
patterns of three regulation enzymes in glycolysis in esophageal
squamous cell carcinoma: association with survival. Med Oncol.
31:1182014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Slamovits CH and Keeling PJ:
Pyruvate-phosphate dikinase of oxymonads and parabasalia and the
evolution of pyrophosphate-dependent glycolysis in anaerobic
eukaryotes. Eukaryot Cell. 5:148–154. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Atlante A, Giannattasio S, Bobba A,
Gagliardi S, Petragallo V, Calissano P, Marra E and Passarella S:
An increase in the ATP levels occurs in cerebellar granule cells en
route to apoptosis in which ATP derives from both oxidative
phosphorylation and anaerobic glycolysis. Biochim Biophys Acta.
1708:50–62. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pietsch J, Sickmann A, Weber G, Bauer J,
Egli M, Wildgruber R, Infanger M and Grimm D: Metabolic enzyme
diversity in different human thyroid cell lines and their
sensitivity to gravitational forces. Proteomics. 12:2539–2546.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhou L, Huang H, McElfresh TA, Prosdocimo
DA and Stanley WC: Impact of anaerobic glycolysis and oxidative
substrate selection on contractile function and mechanical
efficiency during moderate severity ischemia. Am J Physiol Heart
Circ Physiol. 295:H939–H945. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
von Kleist-Retzow JC, Hornig-Do HT,
Schauen M, Eckertz S, Dinh TA, Stassen F, Lottmann N, Bust M,
Galunska B and Wielckens K: Impaired mitochondrial Ca2+
homeostasis in respiratory chain-deficient cells but efficient
compensation of energetic disadvantage by enhanced anaerobic
glycolysis due to low ATP steady state levels. Exp Cell Res.
313:3076–3089. 2007. View Article : Google Scholar : PubMed/NCBI
|