1
|
Richette P and Bardin T: Gout. Lancet.
375:318–328. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
White JS: Comment on: New insights into
the epidemiology of gout. Rheumatology (Oxford). 49:613–614; author
reply 614. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang M, Jiang X, Wu W and Zhang D: A
meta-analysis of alcohol consumption and the risk of gout. Clin
Rheumatol. 32:1641–1648. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Merriman TR, Choi HK and Dalbeth N: The
genetic basis of gout. Rheum Dis Clin North Am. 40:279–290. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhu Y, Pandya BJ and Choi HK: Prevalence
of gout and hyperuricemia in the US general population: The
National Health and Nutrition Examination Survey 2007–2008.
Arthritis Rheum. 63:3136–3141. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kuo CF, Grainge MJ, Zhang W and Doherty M:
Global epidemiology of gout: prevalence, incidence and risk
factors. Nat Rev Rheumatol. 11:649–662. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Khalil AM and Wahlestedt C: Epigenetic
mechanisms of gene regulation during mammalian spermatogenesis.
Epigenetics. 3:21–28. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jin B, Li Y and Robertson KD: DNA
methylation: superior or subordinate in the epigenetic hierarchy?
Genes Cancer. 2:607–617. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bheemanaik S, Reddy YV and Rao DN:
Structure, function and mechanism of exocyclic DNA
methyltransferases. Biochem J. 399:177–190. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Moore LD, Le T and Fan G: DNA methylation
and its basic function. Neuropsychopharmacology. 38:23–38. 2013.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Okano M, Bell DW, Haber DA and Li E: DNA
methyltransferases Dnmt3a and Dnmt3b are essential for de novo
methylation and mammalian development. Cell. 99:247–257. 1999.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Probst AV, Dunleavy E and Almouzni G:
Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell
Biol. 10:192–206. 2009. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Chédin F: The DNMT3 family of mammalian de
novo DNA methyltransferases. Prog Mol Biol Transl Sci. 101:255–285.
2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Basu R and Zhang LF: X chromosome
inactivation: a silence that needs to be broken. Genesis.
49:821–834. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sharp AJ, Stathaki E, Migliavacca E,
Brahmachary M, Montgomery SB, Dupre Y and Antonarakis SE: DNA
methylation profiles of human active and inactive X chromosomes.
Genome Res. 21:1592–1600. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ferguson-Smith AC: Genomic imprinting: the
emergence of an epigenetic paradigm. Nat Rev Genet. 12:565–575.
2011. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Richardson B: DNA methylation and
autoimmune disease. Clin Immunol. 109:72–79. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
O'Brien E Conway, Prideaux S and Chevassut
T: The epigenetic landscape of acute myeloid leukemia. Adv Hematol.
2014:1031752014.PubMed/NCBI
|
19
|
Jost E, Lin Q, Weidner CI, Wilop S,
Hoffmann M, Walenda T, Schemionek M, Herrmann O, Zenke M,
Brümmendorf TH, et al: Epimutations mimic genomic mutations of
DNMT3A in acute myeloid leukemia. Leukemia. 28:1227–1234. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hansen RS, Wijmenga C, Luo P, Stanek AM,
Canfield TK, Weemaes CM and Gartler SM: The DNMT3B DNA
methyltransferase gene is mutated in the ICF immunodeficiency
syndrome. Proc Natl Acad Sci USA. 96:14412–14417. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Park BL, Kim LH, Shin HD, Park YW, Uhm WS
and Bae SC: Association analyses of DNA methyltransferase-1 (DNMT1)
polymorphisms with systemic lupus erythematosus. J Hum Genet.
49:642–646. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nam EJ, Kim KH, Han SW, Cho CM, Lee J,
Park JY and Kang YM: The −283C/T polymorphism of the DNMT3B gene
influences the progression of joint destruction in rheumatoid
arthritis. Rheumatol Int. 30:1299–1303. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wallace SL, Robinson H, Masi AT, Decker
JL, McCarty DJ and Yü TF: Preliminary criteria for the
classification of the acute arthritis of primary gout. Arthritis
Rheum. 20:895–900. 1977. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qing YF, Zhou JG, Li M, Xie WG, Huang CP,
Zeng SP and Yin L: No evidence for involvement of the toll-like
receptor (TLR) 4 gene Asp299Gly and Thr399Ile polymorphisms in
susceptibility to primary gouty arthritis. Rheumatol Int.
33:2937–2941. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Qing YF, Zhou JG, Zhang QB, Wang DS, Li M,
Yang QB, Huang CP, Yin L, Pan SY, Xie WG, et al: Association of
TLR4 Gene rs2149356 polymorphism with primary gouty arthritis in a
case-control study. PLoS One. 8:e648452013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shi YY and He L: SHEsis, a powerful
software platform for analyses of linkage disequilibrium, haplotype
construction, and genetic association at polymorphism loci. Cell
Res. 15:97–98. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kolz M, Johnson T, Sanna S, Teumer A,
Vitart V, Perola M, Mangino M, Albrecht E, Wallace C, Farrall M, et
al: EUROSPAN Consortium; ENGAGE Consortium; PROCARDIS Consortium;
KORA Study; WTCCC: Meta-analysis of 28,141 individuals identifies
common variants within five new loci that influence uric acid
concentrations. PLoS Genet. 5:e10005042009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Matsuo H, Nakayama A, Sakiyama M, Chiba T,
Shimizu S, Kawamura Y, Nakashima H, Nakamura T, Takada Y, Oikawa Y,
et al: ABCG2 dysfunction causes hyperuricemia due to both renal
urate underexcretion and renal urate overload. Sci Rep. 4:37552014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou D, Liu Y, Zhang X, Gu X, Wang H, Luo
X, Zhang J, Zou H and Guan M: Functional polymorphisms of the ABCG2
gene are associated with gout disease in the Chinese Han male
population. Int J Mol Sci. 15:9149–9159. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bardin T and Richette P: Definition of
hyperuricemia and gouty conditions. Curr Opin Rheumatol.
26:186–191. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sharma S, Kelly TK and Jones PA:
Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Meda F, Folci M, Baccarelli A and Selmi C:
The epigenetics of autoimmunity. Cell Mol Immunol. 8:226–236. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Mostowska A, Sajdak S, Pawlik P, Lianeri M
and Jagodzinski PP: DNMT1, DNMT3A and DNMT3B gene variants in
relation to ovarian cancer risk in the Polish population. Mol Biol
Rep. 40:4893–4899. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yang XX, He XQ, Li FX, Wu YS, Gao Y and Li
M: Risk-association of DNA methyltransferases polymorphisms with
gastric cancer in the Southern Chinese population. Int J Mol Sci.
13:8364–8378. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fan H, Liu D, Qiu X, Qiao F, Wu Q, Su X,
Zhang F, Song Y, Zhao Z and Xie W: A functional polymorphism in the
DNA methyltransferase-3A promoter modifies the susceptibility in
gastric cancer but not in esophageal carcinoma. BMC Med. 8:122010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhao Z, Li C, Song Y, Wu Q, Qiao F and Fan
H: Association of the DNMT3A −448A>G polymorphism with genetic
susceptibility to colorectal cancer. Oncol Lett. 3:450–454.
2012.PubMed/NCBI
|
37
|
Duan F, Cui S, Song C, Dai L, Zhao X and
Zhang X: Systematic evaluation of cancer risk associated with
DNMT3B polymorphisms. J Cancer Res Clin Oncol. 141:1205–1220. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Pesmatzoglou M, Lourou M, Goulielmos GN
and Stiakaki E: DNA methyltransferase 3B gene promoter and
interleukin-1 receptor antagonist polymorphisms in childhood immune
thrombocytopenia. Clin Dev Immunol. 2012:3520592012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Piotrowski P, Grobelna MK, Wudarski M,
Olesinska M and Jagodzinski PP: Genetic variants of DNMT3A and
systemic lupus erythematosus susceptibility. Mod Rheumatol.
25:96–99. 2015. View Article : Google Scholar : PubMed/NCBI
|