|
1
|
Daar AS and Greenwood HL: A proposed
definition of regenerative medicine. J Tissue Eng Regen Med.
1:179–184. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Daar AS: The future of replacement and
restorative therapies: From organ transplantation to regenerative
medicine. Transplant Proc. 45:3450–3452. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Blum HE: Advances in individualized and
regenerative medicine. Adv Med Sci. 59:7–12. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lo DD, Zimmermann AS, Nauta A, Longaker MT
and Lorenz HP: Scarless fetal skin wound healing update. Birth
Defects Res C Embryo Today. 96:237–247. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lorenz HP, Longaker MT, Perkocha LA,
Jennings RW, Harrison MR and Adzick NS: Scarless wound repair: A
human fetal skin model. Development. 114:253–259. 1992.PubMed/NCBI
|
|
6
|
Wulff BC, Parent AE, Meleski MA, DiPietro
LA, Schrementi ME and Wilgus TA: Mast cells contribute to scar
formation during fetal wound healing. J Invest Dermatol.
132:458–465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Longaker MT, Chiu ES, Harrison MR,
Crombleholme TM, Langer JC, Duncan BW, Adzick NS, Verrier ED and
Stern R: Studies in fetal wound healing. IV. Hyaluronic
acid-stimulating activity distinguishes fetal wound fluid from
adult wound fluid. Ann Surg. 210:667–672. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Longaker MT, Whitby DJ, Ferguson MW,
Lorenz HP, Harrison MR and Adzick NS: Adult skin wounds in the
fetal environment heal with scar formation. Ann Surg. 219:65–72.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Walmsley GG, Maan ZN, Wong VW, Duscher D,
Hu MS, Zielins ER, Wearda T, Muhonen E, McArdle A, Tevlin R, et al:
Scarless wound healing: Chasing the holy grail. Plast Reconstr
Surg. 135:907–917. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cervelli V and Gentile P: La rigenerazione
dei tessuti tra storia e mitologiaChirurgia Plastica Rigenerativa.
Universo SE: Roma: pp. 1–3. 2015
|
|
11
|
Casadevall A and Pirofski LA: What is a
host? Incorporating the microbiota into the damage-response
framework. Infect Immun. 83:2–7. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Grice EA: The skin microbiome: Potential
for novel diagnostic and therapeutic approaches to cutaneous
disease. Semin Cutan Med Surg. 33:98–103. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bäckhed F, Ding H, Wang T, Hooper LV, Koh
GY, Nagy A, Semenkovich CF and Gordon JI: The gut microbiota as an
environmental factor that regulates fat storage. Proc Natl Acad Sci
USA. 101:15718–15723. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cash HL, Whitham CV, Behrendt CL and
Hooper LV: Symbiotic bacteria direct expression of an intestinal
bactericidal lectin. Science. 313:1126–1130. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Guarner F, Bourdet-Sicard R, Brandtzaeg P,
Gill HS, McGuirk P, van Eden W, Versalovic J, Weinstock JV and Rook
GA: Mechanisms of disease: The hygiene hypothesis revisited. Nat
Clin Pract Gastroenterol Hepatol. 3:275–284. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kelly D, Campbell JI, King TP, Grant G,
Jansson EA, Coutts AG, Pettersson S and Conway S: Commensal
anaerobic gut bacteria attenuate inflammation by regulating
nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat Immunol.
5:104–112. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
17
|
Martin FP, Dumas ME, Wang Y,
Legido-Quigley C, Yap IK, Tang H, Zirah S, Murphy GM, Cloarec O,
Lindon JC, et al: A top-down systems biology view of
microbiome-mammalian metabolic interactions in a mouse model. Mol
Syst Biol. 3:1122007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mazmanian SK, Liu CH, Tzianabos AO and
Kasper DL: An immunomodulatory molecule of symbiotic bacteria
directs maturation of the host immune system. Cell. 122:107–118.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rakoff-Nahoum S, Paglino J,
Eslami-Varzaneh F, Edberg S and Medzhitov R: Recognition of
commensal microflora by toll-like receptors is required for
intestinal homeostasis. Cell. 118:229–241. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wright GD: Antibiotic resistance in the
environment: A link to the clinic? Curr Opin Microbiol. 13:589–594.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Foxman B, Goldberg D, Murdock C, Xi C and
Gilsdorf JR: Conceptualizing human microbiota: From multicelled
organ to ecological community. Interdiscip Perspect Infect Dis.
2008:6139792008.PubMed/NCBI
|
|
22
|
Turnbaugh PJ, Ley RE, Hamady M,
Fraser-Liggett CM, Knight R and Gordon JI: The human microbiome
project. Nature. 449:804–810. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Peterson J, Garges S, Giovanni M, McInnes
P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal
C, et al: NIH HMP Working Group: The NIH Human Microbiome Project.
Genome Res. 19:2317–2323. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ehrlich SD: The MetaHIT Consortium:
MetaHIT: The European Union project on metagenomics of the human
intestinal tractMetagenomics of the human body. Springer; New York:
pp. 307–316. 2011, View Article : Google Scholar
|
|
25
|
Huss J: Methodology and ontology in
microbiome research. Biol Theory. 9:392–400. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
National Research Council (US) Committee
on Metagenomics, . The New Science of Metagenomics: Revealing the
Secrets of Our Microbial Planet. The National Academies Press;
Washington (DC): 2007
|
|
27
|
Schloss PD: Microbiology: An integrated
view of the skin microbiome. Nature. 514:44–45. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dominguez-Bello MG, Costello EK, Contreras
M, Magris M, Hidalgo G, Fierer N and Knight R: Delivery mode shapes
the acquisition and structure of the initial microbiota across
multiple body habitats in newborns. Proc Natl Acad Sci USA.
107:11971–11975. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Baviera G, Leoni MC, Capra L, Cipriani F,
Longo G, Maiello N, Ricci G and Galli E: Microbiota in healthy skin
and in atopic eczema. BioMed Res Int. 2014:4369212014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Capone KA, Dowd SE, Stamatas GN and
Nikolovski J: Diversity of the human skin microbiome early in life.
J Invest Dermatol. 131:2026–2032. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Grice EA, Kong HH, Renaud G, Young AC,
Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML and Segre JA:
NISC Comparative Sequencing Program: A diversity profile of the
human skin microbiota. Genome Res. 18:1043–1050. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Findley K and Grice EA: The skin
microbiome: A focus on pathogens and their association with skin
disease. PLoS Pathog. 10:e10044362014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Huttenhower C, Gevers D, Knight R,
Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM,
FitzGerald MG, Fulton RS, et al: Human Microbiome Project
Consortium: Structure, function and diversity of the healthy human
microbiome. Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Costello EK, Lauber CL, Hamady M, Fierer
N, Gordon JI and Knight R, Gordon JI and Knight R: Bacterial
community variation in human body habitats across space and time.
Science. 326:1694–1697. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Grice EA, Kong HH, Conlan S, Deming CB,
Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED,
et al: NISC Comparative Sequencing Program: Topographical and
temporal diversity of the human skin microbiome. Science.
324:1190–1192. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Eckburg PB, Bik EM, Bernstein CN, Purdom
E, Dethlefsen L, Sargent M, Gill SR, Nelson KE and Relman DA:
Diversity of the human intestinal microbial flora. Science.
308:1635–1638. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Vanhoutte T, Huys G, Brandt E and Swings
J: Temporal stability analysis of the microbiota in human feces by
denaturing gradient gel electrophoresis using universal and
group-specific 16S rRNA gene primers. FEMS Microbiol Ecol.
48:437–446. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ley RE, Peterson DA and Gordon JI:
Ecological and evolutionary forces shaping microbial diversity in
the human intestine. Cell. 124:837–848. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yuki T, Yoshida H, Akazawa Y, Komiya A,
Sugiyama Y and Inoue S: Activation of TLR2 enhances tight junction
barrier in epidermal keratinocytes. J Immunol. 187:3230–3237. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lai Y, Di Nardo A, Nakatsuji T, Leichtle
A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, et
al: Commensal bacteria regulate Toll-like receptor 3-dependent
inflammation after skin injury. Nat Med. 15:1377–1382. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lai Y, Cogen AL, Radek KA, Park HJ,
Macleod DT, Leichtle A, Ryan AF, Di Nardo A and Gallo RL:
Activation of TLR2 by a small molecule produced by Staphylococcus
epidermidis increases antimicrobial defense against bacterial skin
infections. J Invest Dermatol. 130:2211–2221. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wanke I, Steffen H, Christ C, Krismer B,
Götz F, Peschel A, Schaller M and Schittek B: Skin commensals
amplify the innate immune response to pathogens by activation of
distinct signaling pathways. J Invest Dermatol. 131:382–390. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Round JL, Lee SM, Li J, Tran G, Jabri B,
Chatila TA and Mazmanian SK: The Toll-like receptor 2 pathway
establishes colonization by a commensal of the human microbiota.
Science. 332:974–977. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Atarashi K, Nishimura J, Shima T, Umesaki
Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, et al:
ATP drives lamina propria T(H)17 cell differentiation. Nature.
455:808–812. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hall JA, Bouladoux N, Sun CM, Wohlfert EA,
Blank RB, Zhu Q, Grigg ME, Berzofsky JA and Belkaid Y: Commensal
DNA limits regulatory T cell conversion and is a natural adjuvant
of intestinal immune responses. Immunity. 29:637–649. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Nakatsuji T, Chiang HI, Jiang SB,
Nagarajan H, Zengler K and Gallo RL: The microbiome extends to
subepidermal compartments of normal skin. Nat Commun. 4:14312013.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Rodriguez R Sanchez, Pauli ML, Neuhaus IM,
Yu SS, Arron ST, Harris HW, Yang SH, Anthony BA, Sverdrup FM,
Krow-Lucal E, et al: Memory regulatory T cells reside in human
skin. J Clin Invest. 124:1027–1036. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Aberg KM, Man MQ, Gallo RL, Ganz T,
Crumrine D, Brown BE, Choi EH, Kim DK, Schröder JM, Feingold KR, et
al: Co-regulation and interdependence of the mammalian epidermal
permeability and antimicrobial barriers. J Invest Dermatol.
128:917–925. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gallo RL and Nakatsuji T: Microbial
symbiosis with the innate immune defense system of the skin. J
Invest Dermatol. 131:1974–1980. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gallo RL, Murakami M, Ohtake T and Zaiou
M: Biology and clinical relevance of naturally occurring
antimicrobial peptides. J Allergy Clin Immunol. 110:823–831. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lai Y and Gallo RL: AMPed up immunity: How
antimicrobial peptides have multiple roles in immune defense.
Trends Immunol. 30:131–141. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wiesner J and Vilcinskas A: Antimicrobial
peptides: The ancient arm of the human immune system. Virulence.
1:440–464. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai
L, McDowell A, Seltmann H, Patrick S, Zouboulis CC and Kemény L:
Propionibacterium acnes and lipopolysaccharide induce the
expression of antimicrobial peptides and proinflammatory
cytokines/chemokines in human sebocytes. Microbes Infect.
8:2195–2205. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lee DY, Yamasaki K, Rudsil J, Zouboulis
CC, Park GT, Yang JM and Gallo RL: Sebocytes express functional
cathelicidin antimicrobial peptides and can act to kill
propionibacterium acnes. J Invest Dermatol. 128:1863–1866. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Marples RR, Downing DT and Kligman AM:
Control of free fatty acids in human surface lipids by
Corynebacterium acnes. J Invest Dermatol. 56:127–131. 1971.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Götz F, Verheij HM and Rosenstein R:
Staphylococcal lipases: Molecular characterisation, secretion, and
processing. Chem Phys Lipids. 93:15–25. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bastos MC, Ceotto H, Coelho ML and
Nascimento JS: Staphylococcal antimicrobial peptides: Relevant
properties and potential biotechnological applications. Curr Pharm
Biotechnol. 10:38–61. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cogen AL, Yamasaki K, Sanchez KM,
Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim
JE, et al: Selective antimicrobial action is provided by
phenol-soluble modulins derived from Staphylococcus epidermidis, a
normal resident of the skin. J Invest Dermatol. 130:192–200. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang R, Braughton KR, Kretschmer D, Bach
TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel
A, et al: Identification of novel cytolytic peptides as key
virulence determinants for community-associated MRSA. Nat Med.
13:1510–1514. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cogen AL, Yamasaki K, Muto J, Sanchez KM,
Alexander L Crotty, Tanios J, Lai Y, Kim JE, Nizet V and Gallo RL:
Staphylococcus epidermidis antimicrobial delta-toxin
(phenol-soluble modulin-gamma) cooperates with host antimicrobial
peptides to kill group A Streptococcus. PLoS One. 5:e85572010.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
McFall-Ngai M: Adaptive immunity: Care for
the community. Nature. 445:1532007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Cunnington AJ, Sim K, Deierl A, Kroll JS,
Brannigan E and Darby J: ‘Vaginal seeding’ of infants born by
caesarean section. BMJ. 352:i2272016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Clemente JC and Dominguez-Bello MG: Safety
of vaginal microbial transfer in infants delivered by caesarean,
and expected health outcomes. BMJ. 352:i17072016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Matijašić M, Meštrović T, Perić M, Čipčić
Paljetak H, Panek M, Vranešić Bender D, Kelečić D Ljubas, Krznarić
Ž and Verbanac D: Modulating composition and metabolic activity of
the gut microbiota in IBD patients. Int J Mol Sci. 17:E5782016.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sekirov I, Russell SL, Antunes LC and
Finlay BB: Gut microbiota in health and disease. Physiol Rev.
90:859–904. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
DeGruttola AK, Low D, Mizoguchi A and
Mizoguchi E: Current understanding of dysbiosis in disease in human
and animal models. Inflamm Bowel Dis. 22:1137–1150. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cammarota G, Ianiro G, Bibbò S and
Gasbarrini A: Fecal microbiota transplantation: A new old kid on
the block for the management of gut microbiota-related disease. J
Clin Gastroenterol. 48(Suppl 1): S80–S84. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Patelarou E, Girvalaki C, Brokalaki H,
Patelarou A, Androulaki Z and Vardavas C: Current evidence on the
associations of breastfeeding, infant formula, and cow's milk
introduction with type 1 diabetes mellitus: A systematic review.
Nutr Rev. 70:509–519. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Spagnuolo I, Patti A, Sebastiani G, Nigi L
and Dotta F: The case for virus-induced type 1 diabetes. Curr Opin
Endocrinol Diabetes Obes. 20:292–298. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Abela AG and Fava S: Association of
incidence of type 1 diabetes with mortality from infectious disease
and with antibiotic susceptibility at a country level. Acta
Diabetol. 50:859–865. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Muirhead CR, Cheetham TD, Court S, Begon M
and McNally RJQ: How do childhood diagnoses of type 1 diabetes
cluster in time? PLoS One. 8:e604892013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Brugman S, Klatter FA, Visser JT,
Wildeboer-Veloo AC, Harmsen HJ, Rozing J and Bos NA: Antibiotic
treatment partially protects against type 1 diabetes in the
Bio-Breeding diabetes-prone rat. Is the gut flora involved in the
development of type 1 diabetes? Diabetologia. 49:2105–2108.
2006.PubMed/NCBI
|
|
73
|
Mejía-León ME, Petrosino JF, Ajami NJ,
Domínguez-Bello MG and de la Barca AM: Fecal microbiota imbalance
in Mexican children with type 1 diabetes. Sci Rep. 4:38142014.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Vaarala O: Is the origin of type 1
diabetes in the gut? Immunol Cell Biol. 90:271–276. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Oliver-Krasinski JM and Stoffers DA: On
the origin of the beta cell. Genes Dev. 22:1998–2021. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Giongo A, Gano KA, Crabb DB, Mukherjee N,
Novelo LL, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, et al:
Toward defining the autoimmune microbiome for type 1 diabetes. ISME
J. 5:82–91. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Turnbaugh PJ, Bäckhed F, Fulton L and
Gordon JI: Diet-induced obesity is linked to marked but reversible
alterations in the mouse distal gut microbiome. Cell Host Microbe.
3:213–223. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Aron-Wisnewsky J and Clément K: The gut
microbiome, diet, and links to cardiometabolic and chronic
disorders. Nat Rev Nephrol. 12:169–181. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cotillard A, Kennedy SP, Kong LC, Prifti
E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F,
Galleron N, et al: ANR MicroObes consortium: Dietary intervention
impact on gut microbial gene richness. Nature. 500:585–588. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Collins SM, Surette M and Bercik P: The
interplay between the intestinal microbiota and the brain. Nat Rev
Microbiol. 10:735–742. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Anglin R, Surette M, Moayyedi P and Bercik
P: Lost in translation: The gut microbiota in psychiatric illness.
Can J Psychiatry. 60:460–463. 2015.PubMed/NCBI
|
|
82
|
Mayer EA: Gut feelings: The emerging
biology of gut-brain communication. Nat Rev Neurosci. 12:453–466.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cryan JF and Dinan TG: Mind-altering
microorganisms: The impact of the gut microbiota on brain and
behaviour. Nat Rev Neurosci. 13:701–712. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Belizário JE and Napolitano M: Human
microbiomes and their roles in dysbiosis, common diseases, and
novel therapeutic approaches. Front Microbiol. 6:10502015.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Guaní-Guerra E, Santos-Mendoza T,
Lugo-Reyes SO and Terán LM: Antimicrobial peptides: General
overview and clinical implications in human health and disease.
Clin Immunol. 135:1–11. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ong PY, Ohtake T, Brandt C, Strickland I,
Boguniewicz M, Ganz T, Gallo RL and Leung DY: Endogenous
antimicrobial peptides and skin infections in atopic dermatitis. N
Engl J Med. 347:1151–1160. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Nomura I, Goleva E, Howell MD, Hamid QA,
Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, et al:
Cytokine milieu of atopic dermatitis, as compared to psoriasis,
skin prevents induction of innate immune response genes. J Immunol.
171:3262–3269. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hooper LV, Littman DR and Macpherson AJ:
Interactions between the microbiota and the immune system. Science.
336:1268–1273. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Naik S, Bouladoux N, Wilhelm C, Molloy MJ,
Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S,
et al: Compartmentalized control of skin immunity by resident
commensals. Science. 337:1115–1119. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Trivedi B: Microbiome: The surface
brigade. Nature. 492:S60–S61. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Simpson DM and Ross R: The neutrophilic
leukocyte in wound repair a study with antineutrophil serum. J Clin
Invest. 51:2009–2023. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mast BA and Schultz GS: Interactions of
cytokines, growth factors, and proteases in acute and chronic
wounds. Wound Repair Regen. 4:411–420. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Werner S and Grose R: Regulation of wound
healing by growth factors and cytokines. Physiol Rev. 83:835–870.
2003.PubMed/NCBI
|
|
94
|
Kostarnoy AV, Gancheva PG, Logunov DY,
Verkhovskaya LV, Bobrov MA, Scheblyakov DV, Tukhvatulin AI,
Filippova NE, Naroditsky BS and Gintsburg AL: Topical bacterial
lipopolysaccharide application affects inflammatory response and
promotes wound healing. J Interferon Cytokine Res. 33:514–522.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kanno E, Kawakami K, Ritsu M, Ishii K,
Tanno H, Toriyabe S, Imai Y, Maruyama R and Tachi M: Wound healing
in skin promoted by inoculation with Pseudomonas aeruginosa PAO1:
The critical role of tumor necrosis factor-α secreted from
infiltrating neutrophils. Wound Repair Regen. 19:608–621. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ferreira MO, Costa PC and Bahia MF: Effect
of São Pedro do Sul thermal water on skin irritation. Int J Cosmet
Sci. 32:205–210. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Goldman MP, Merial-Kieny C, Nocera T and
Mery S: Comparative benefit of two thermal spring waters after
photodynamic therapy procedure. J Cosmet Dermatol. 6:31–35. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Barolet D, Lussier I, Mery S and
Merial-Kieny C: Beneficial effects of spraying low mineral content
thermal spring water after fractional photothermolysis in patients
with dermal melasma. J Cosmet Dermatol. 8:114–118. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Faga A, Nicoletti G, Gregotti C, Finotti
V, Nitto A and Gioglio L: Effects of thermal water on skin
regeneration. Int J Mol Med. 29:732–740. 2012.PubMed/NCBI
|
|
100
|
Nicoletti G, Corbella M, Jaber O, Marone
P, Scevola D and Faga A: Non-pathogenic microflora of a spring
water with regenerative properties. Biomed Rep. 3:758–762.
2015.PubMed/NCBI
|
|
101
|
Aries MF, Fabre P, Duplan H, Pigeon H
Hernandez, Galliano MF, Rizzi N Castex, Touya S Bessou and Nguyen
T: I-modulia, an Aquaphilus dolomiae extract, stimulates innate
immune response through Toll like receptor activation. J Am Acad
Dermatol. 70(Suppl 1): AB632014.
|
|
102
|
Mahé YF, Martin R, Aubert L, Billoni N,
Collin C, Pruche F, Bastien P, Drost SS, Lane AT and Meybeck A:
Induction of the skin endogenous protective mitochondrial MnSOD by
Vitreoscilla filiformis extract. Int J Cosmet Sci. 28:277–287.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Mahé YF, Perez MJ, Tacheau C, Fanchon C,
Martin R, Rousset F and Seite S: A new Vitreoscilla filiformis
extract grown on spa water-enriched medium activates endogenous
cutaneous antioxidant and antimicrobial defenses through a
potential Toll-like receptor 2/protein kinase C, zeta transduction
pathway. Clin Cosmet Investig Dermatol. 6:191–196. 2013.PubMed/NCBI
|
|
104
|
Castex-Rizzi N, Charveron M and
Merial-Kieny C: Inhibition of TNF-alpha induced-adhesion molecules
by Avène Thermal Spring Water in human endothelial cells. J Eur
Acad Dermatol Venereol. 25(Suppl 1): 6–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ghersetich I and Lotti TM: Immunologic
aspects: Immunology of mineral water spas. Clin Dermatol.
14:563–566. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Leavis HL, Bonten MJ and Willems RJ:
Identification of high-risk enterococcal clonal complexes: Global
dispersion and antibiotic resistance. Curr Opin Microbiol.
9:454–460. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Miragaia M, Thomas JC, Couto I, Enright MC
and de Lencastre H: Inferring a population structure for
Staphylococcus epidermidis from multilocus sequence typing data. J
Bacteriol. 189:2540–2552. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Robinson DA and Enright MC: Multilocus
sequence typing and the evolution of methicillin-resistant
Staphylococcus aureus. Clin Microbiol Infect. 10:92–97. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Robinson DA, Sutcliffe JA, Tewodros W,
Manoharan A and Bessen DE: Evolution and global dissemination of
macrolide-resistant group A streptococci. Antimicrob Agents
Chemother. 50:2903–2911. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Löfmark S, Jernberg C, Jansson JK and
Edlund C: Clindamycin-induced enrichment and long-term persistence
of resistant Bacteroides spp. and resistance genes. J Antimicrob
Chemother. 58:1160–1167. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Sjölund M, Tano E, Blaser MJ, Andersson DI
and Engstrand L: Persistence of resistant Staphylococcus
epidermidis after single course of clarithromycin. Emerg Infect
Dis. 11:1389–1393. 2005. View Article : Google Scholar : PubMed/NCBI
|