Novel perspectives on the role of the human microbiota in regenerative medicine and surgery (Review)
- Authors:
- Tommaso Pellegatta
- Marco Saler
- Viola Bonfanti
- Giovanni Nicoletti
- Angela Faga
-
Affiliations: Department of Clinical‑Surgical, Diagnostic and Pediatric Sciences, Plastic Surgery Unit, University of Pavia, Pavia, I‑27100 Lombardy, Italy - Published online on: October 11, 2016 https://doi.org/10.3892/br.2016.778
- Pages: 519-524
-
Copyright: © Pellegatta et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Daar AS and Greenwood HL: A proposed definition of regenerative medicine. J Tissue Eng Regen Med. 1:179–184. 2007. View Article : Google Scholar : PubMed/NCBI | |
Daar AS: The future of replacement and restorative therapies: From organ transplantation to regenerative medicine. Transplant Proc. 45:3450–3452. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blum HE: Advances in individualized and regenerative medicine. Adv Med Sci. 59:7–12. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lo DD, Zimmermann AS, Nauta A, Longaker MT and Lorenz HP: Scarless fetal skin wound healing update. Birth Defects Res C Embryo Today. 96:237–247. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR and Adzick NS: Scarless wound repair: A human fetal skin model. Development. 114:253–259. 1992.PubMed/NCBI | |
Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME and Wilgus TA: Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol. 132:458–465. 2012. View Article : Google Scholar : PubMed/NCBI | |
Longaker MT, Chiu ES, Harrison MR, Crombleholme TM, Langer JC, Duncan BW, Adzick NS, Verrier ED and Stern R: Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Ann Surg. 210:667–672. 1989. View Article : Google Scholar : PubMed/NCBI | |
Longaker MT, Whitby DJ, Ferguson MW, Lorenz HP, Harrison MR and Adzick NS: Adult skin wounds in the fetal environment heal with scar formation. Ann Surg. 219:65–72. 1994. View Article : Google Scholar : PubMed/NCBI | |
Walmsley GG, Maan ZN, Wong VW, Duscher D, Hu MS, Zielins ER, Wearda T, Muhonen E, McArdle A, Tevlin R, et al: Scarless wound healing: Chasing the holy grail. Plast Reconstr Surg. 135:907–917. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cervelli V and Gentile P: La rigenerazione dei tessuti tra storia e mitologiaChirurgia Plastica Rigenerativa. Universo SE: Roma: pp. 1–3. 2015 | |
Casadevall A and Pirofski LA: What is a host? Incorporating the microbiota into the damage-response framework. Infect Immun. 83:2–7. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grice EA: The skin microbiome: Potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg. 33:98–103. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF and Gordon JI: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 101:15718–15723. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cash HL, Whitham CV, Behrendt CL and Hooper LV: Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science. 313:1126–1130. 2006. View Article : Google Scholar : PubMed/NCBI | |
Guarner F, Bourdet-Sicard R, Brandtzaeg P, Gill HS, McGuirk P, van Eden W, Versalovic J, Weinstock JV and Rook GA: Mechanisms of disease: The hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol. 3:275–284. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S and Conway S: Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat Immunol. 5:104–112. 2004. View Article : Google Scholar : PubMed/NCBI | |
Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK, Tang H, Zirah S, Murphy GM, Cloarec O, Lindon JC, et al: A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol. 3:1122007. View Article : Google Scholar : PubMed/NCBI | |
Mazmanian SK, Liu CH, Tzianabos AO and Kasper DL: An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 122:107–118. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S and Medzhitov R: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 118:229–241. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wright GD: Antibiotic resistance in the environment: A link to the clinic? Curr Opin Microbiol. 13:589–594. 2010. View Article : Google Scholar : PubMed/NCBI | |
Foxman B, Goldberg D, Murdock C, Xi C and Gilsdorf JR: Conceptualizing human microbiota: From multicelled organ to ecological community. Interdiscip Perspect Infect Dis. 2008:6139792008.PubMed/NCBI | |
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R and Gordon JI: The human microbiome project. Nature. 449:804–810. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, et al: NIH HMP Working Group: The NIH Human Microbiome Project. Genome Res. 19:2317–2323. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich SD: The MetaHIT Consortium: MetaHIT: The European Union project on metagenomics of the human intestinal tractMetagenomics of the human body. Springer; New York: pp. 307–316. 2011, View Article : Google Scholar | |
Huss J: Methodology and ontology in microbiome research. Biol Theory. 9:392–400. 2014. View Article : Google Scholar : PubMed/NCBI | |
National Research Council (US) Committee on Metagenomics, . The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. The National Academies Press; Washington (DC): 2007 | |
Schloss PD: Microbiology: An integrated view of the skin microbiome. Nature. 514:44–45. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N and Knight R: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 107:11971–11975. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baviera G, Leoni MC, Capra L, Cipriani F, Longo G, Maiello N, Ricci G and Galli E: Microbiota in healthy skin and in atopic eczema. BioMed Res Int. 2014:4369212014. View Article : Google Scholar : PubMed/NCBI | |
Capone KA, Dowd SE, Stamatas GN and Nikolovski J: Diversity of the human skin microbiome early in life. J Invest Dermatol. 131:2026–2032. 2011. View Article : Google Scholar : PubMed/NCBI | |
Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML and Segre JA: NISC Comparative Sequencing Program: A diversity profile of the human skin microbiota. Genome Res. 18:1043–1050. 2008. View Article : Google Scholar : PubMed/NCBI | |
Findley K and Grice EA: The skin microbiome: A focus on pathogens and their association with skin disease. PLoS Pathog. 10:e10044362014. View Article : Google Scholar : PubMed/NCBI | |
Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, et al: Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI | |
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI and Knight R, Gordon JI and Knight R: Bacterial community variation in human body habitats across space and time. Science. 326:1694–1697. 2009. View Article : Google Scholar : PubMed/NCBI | |
Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, et al: NISC Comparative Sequencing Program: Topographical and temporal diversity of the human skin microbiome. Science. 324:1190–1192. 2009. View Article : Google Scholar : PubMed/NCBI | |
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE and Relman DA: Diversity of the human intestinal microbial flora. Science. 308:1635–1638. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vanhoutte T, Huys G, Brandt E and Swings J: Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol. 48:437–446. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ley RE, Peterson DA and Gordon JI: Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 124:837–848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yuki T, Yoshida H, Akazawa Y, Komiya A, Sugiyama Y and Inoue S: Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol. 187:3230–3237. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, et al: Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 15:1377–1382. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, Ryan AF, Di Nardo A and Gallo RL: Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 130:2211–2221. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wanke I, Steffen H, Christ C, Krismer B, Götz F, Peschel A, Schaller M and Schittek B: Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol. 131:382–390. 2011. View Article : Google Scholar : PubMed/NCBI | |
Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA and Mazmanian SK: The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 332:974–977. 2011. View Article : Google Scholar : PubMed/NCBI | |
Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, et al: ATP drives lamina propria T(H)17 cell differentiation. Nature. 455:808–812. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, Zhu Q, Grigg ME, Berzofsky JA and Belkaid Y: Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 29:637–649. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nakatsuji T, Chiang HI, Jiang SB, Nagarajan H, Zengler K and Gallo RL: The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 4:14312013. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez R Sanchez, Pauli ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, Yang SH, Anthony BA, Sverdrup FM, Krow-Lucal E, et al: Memory regulatory T cells reside in human skin. J Clin Invest. 124:1027–1036. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aberg KM, Man MQ, Gallo RL, Ganz T, Crumrine D, Brown BE, Choi EH, Kim DK, Schröder JM, Feingold KR, et al: Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol. 128:917–925. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gallo RL and Nakatsuji T: Microbial symbiosis with the innate immune defense system of the skin. J Invest Dermatol. 131:1974–1980. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gallo RL, Murakami M, Ohtake T and Zaiou M: Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 110:823–831. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lai Y and Gallo RL: AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30:131–141. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wiesner J and Vilcinskas A: Antimicrobial peptides: The ancient arm of the human immune system. Virulence. 1:440–464. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, Seltmann H, Patrick S, Zouboulis CC and Kemény L: Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 8:2195–2205. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee DY, Yamasaki K, Rudsil J, Zouboulis CC, Park GT, Yang JM and Gallo RL: Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill propionibacterium acnes. J Invest Dermatol. 128:1863–1866. 2008. View Article : Google Scholar : PubMed/NCBI | |
Marples RR, Downing DT and Kligman AM: Control of free fatty acids in human surface lipids by Corynebacterium acnes. J Invest Dermatol. 56:127–131. 1971. View Article : Google Scholar : PubMed/NCBI | |
Götz F, Verheij HM and Rosenstein R: Staphylococcal lipases: Molecular characterisation, secretion, and processing. Chem Phys Lipids. 93:15–25. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bastos MC, Ceotto H, Coelho ML and Nascimento JS: Staphylococcal antimicrobial peptides: Relevant properties and potential biotechnological applications. Curr Pharm Biotechnol. 10:38–61. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim JE, et al: Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 130:192–200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, et al: Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 13:1510–1514. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cogen AL, Yamasaki K, Muto J, Sanchez KM, Alexander L Crotty, Tanios J, Lai Y, Kim JE, Nizet V and Gallo RL: Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus. PLoS One. 5:e85572010. View Article : Google Scholar : PubMed/NCBI | |
McFall-Ngai M: Adaptive immunity: Care for the community. Nature. 445:1532007. View Article : Google Scholar : PubMed/NCBI | |
Cunnington AJ, Sim K, Deierl A, Kroll JS, Brannigan E and Darby J: ‘Vaginal seeding’ of infants born by caesarean section. BMJ. 352:i2272016. View Article : Google Scholar : PubMed/NCBI | |
Clemente JC and Dominguez-Bello MG: Safety of vaginal microbial transfer in infants delivered by caesarean, and expected health outcomes. BMJ. 352:i17072016. View Article : Google Scholar : PubMed/NCBI | |
Matijašić M, Meštrović T, Perić M, Čipčić Paljetak H, Panek M, Vranešić Bender D, Kelečić D Ljubas, Krznarić Ž and Verbanac D: Modulating composition and metabolic activity of the gut microbiota in IBD patients. Int J Mol Sci. 17:E5782016. View Article : Google Scholar : PubMed/NCBI | |
Sekirov I, Russell SL, Antunes LC and Finlay BB: Gut microbiota in health and disease. Physiol Rev. 90:859–904. 2010. View Article : Google Scholar : PubMed/NCBI | |
DeGruttola AK, Low D, Mizoguchi A and Mizoguchi E: Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 22:1137–1150. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cammarota G, Ianiro G, Bibbò S and Gasbarrini A: Fecal microbiota transplantation: A new old kid on the block for the management of gut microbiota-related disease. J Clin Gastroenterol. 48(Suppl 1): S80–S84. 2014. View Article : Google Scholar : PubMed/NCBI | |
Patelarou E, Girvalaki C, Brokalaki H, Patelarou A, Androulaki Z and Vardavas C: Current evidence on the associations of breastfeeding, infant formula, and cow's milk introduction with type 1 diabetes mellitus: A systematic review. Nutr Rev. 70:509–519. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spagnuolo I, Patti A, Sebastiani G, Nigi L and Dotta F: The case for virus-induced type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 20:292–298. 2013. View Article : Google Scholar : PubMed/NCBI | |
Abela AG and Fava S: Association of incidence of type 1 diabetes with mortality from infectious disease and with antibiotic susceptibility at a country level. Acta Diabetol. 50:859–865. 2013. View Article : Google Scholar : PubMed/NCBI | |
Muirhead CR, Cheetham TD, Court S, Begon M and McNally RJQ: How do childhood diagnoses of type 1 diabetes cluster in time? PLoS One. 8:e604892013. View Article : Google Scholar : PubMed/NCBI | |
Brugman S, Klatter FA, Visser JT, Wildeboer-Veloo AC, Harmsen HJ, Rozing J and Bos NA: Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia. 49:2105–2108. 2006.PubMed/NCBI | |
Mejía-León ME, Petrosino JF, Ajami NJ, Domínguez-Bello MG and de la Barca AM: Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep. 4:38142014. View Article : Google Scholar : PubMed/NCBI | |
Vaarala O: Is the origin of type 1 diabetes in the gut? Immunol Cell Biol. 90:271–276. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oliver-Krasinski JM and Stoffers DA: On the origin of the beta cell. Genes Dev. 22:1998–2021. 2008. View Article : Google Scholar : PubMed/NCBI | |
Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, et al: Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5:82–91. 2011. View Article : Google Scholar : PubMed/NCBI | |
Turnbaugh PJ, Bäckhed F, Fulton L and Gordon JI: Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 3:213–223. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aron-Wisnewsky J and Clément K: The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol. 12:169–181. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, et al: ANR MicroObes consortium: Dietary intervention impact on gut microbial gene richness. Nature. 500:585–588. 2013. View Article : Google Scholar : PubMed/NCBI | |
Collins SM, Surette M and Bercik P: The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 10:735–742. 2012. View Article : Google Scholar : PubMed/NCBI | |
Anglin R, Surette M, Moayyedi P and Bercik P: Lost in translation: The gut microbiota in psychiatric illness. Can J Psychiatry. 60:460–463. 2015.PubMed/NCBI | |
Mayer EA: Gut feelings: The emerging biology of gut-brain communication. Nat Rev Neurosci. 12:453–466. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cryan JF and Dinan TG: Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 13:701–712. 2012. View Article : Google Scholar : PubMed/NCBI | |
Belizário JE and Napolitano M: Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol. 6:10502015. View Article : Google Scholar : PubMed/NCBI | |
Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO and Terán LM: Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin Immunol. 135:1–11. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL and Leung DY: Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 347:1151–1160. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, et al: Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 171:3262–3269. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hooper LV, Littman DR and Macpherson AJ: Interactions between the microbiota and the immune system. Science. 336:1268–1273. 2012. View Article : Google Scholar : PubMed/NCBI | |
Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, et al: Compartmentalized control of skin immunity by resident commensals. Science. 337:1115–1119. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trivedi B: Microbiome: The surface brigade. Nature. 492:S60–S61. 2012. View Article : Google Scholar : PubMed/NCBI | |
Simpson DM and Ross R: The neutrophilic leukocyte in wound repair a study with antineutrophil serum. J Clin Invest. 51:2009–2023. 1972. View Article : Google Scholar : PubMed/NCBI | |
Mast BA and Schultz GS: Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 4:411–420. 1996. View Article : Google Scholar : PubMed/NCBI | |
Werner S and Grose R: Regulation of wound healing by growth factors and cytokines. Physiol Rev. 83:835–870. 2003.PubMed/NCBI | |
Kostarnoy AV, Gancheva PG, Logunov DY, Verkhovskaya LV, Bobrov MA, Scheblyakov DV, Tukhvatulin AI, Filippova NE, Naroditsky BS and Gintsburg AL: Topical bacterial lipopolysaccharide application affects inflammatory response and promotes wound healing. J Interferon Cytokine Res. 33:514–522. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kanno E, Kawakami K, Ritsu M, Ishii K, Tanno H, Toriyabe S, Imai Y, Maruyama R and Tachi M: Wound healing in skin promoted by inoculation with Pseudomonas aeruginosa PAO1: The critical role of tumor necrosis factor-α secreted from infiltrating neutrophils. Wound Repair Regen. 19:608–621. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ferreira MO, Costa PC and Bahia MF: Effect of São Pedro do Sul thermal water on skin irritation. Int J Cosmet Sci. 32:205–210. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goldman MP, Merial-Kieny C, Nocera T and Mery S: Comparative benefit of two thermal spring waters after photodynamic therapy procedure. J Cosmet Dermatol. 6:31–35. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barolet D, Lussier I, Mery S and Merial-Kieny C: Beneficial effects of spraying low mineral content thermal spring water after fractional photothermolysis in patients with dermal melasma. J Cosmet Dermatol. 8:114–118. 2009. View Article : Google Scholar : PubMed/NCBI | |
Faga A, Nicoletti G, Gregotti C, Finotti V, Nitto A and Gioglio L: Effects of thermal water on skin regeneration. Int J Mol Med. 29:732–740. 2012.PubMed/NCBI | |
Nicoletti G, Corbella M, Jaber O, Marone P, Scevola D and Faga A: Non-pathogenic microflora of a spring water with regenerative properties. Biomed Rep. 3:758–762. 2015.PubMed/NCBI | |
Aries MF, Fabre P, Duplan H, Pigeon H Hernandez, Galliano MF, Rizzi N Castex, Touya S Bessou and Nguyen T: I-modulia, an Aquaphilus dolomiae extract, stimulates innate immune response through Toll like receptor activation. J Am Acad Dermatol. 70(Suppl 1): AB632014. | |
Mahé YF, Martin R, Aubert L, Billoni N, Collin C, Pruche F, Bastien P, Drost SS, Lane AT and Meybeck A: Induction of the skin endogenous protective mitochondrial MnSOD by Vitreoscilla filiformis extract. Int J Cosmet Sci. 28:277–287. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mahé YF, Perez MJ, Tacheau C, Fanchon C, Martin R, Rousset F and Seite S: A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway. Clin Cosmet Investig Dermatol. 6:191–196. 2013.PubMed/NCBI | |
Castex-Rizzi N, Charveron M and Merial-Kieny C: Inhibition of TNF-alpha induced-adhesion molecules by Avène Thermal Spring Water in human endothelial cells. J Eur Acad Dermatol Venereol. 25(Suppl 1): 6–11. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ghersetich I and Lotti TM: Immunologic aspects: Immunology of mineral water spas. Clin Dermatol. 14:563–566. 1996. View Article : Google Scholar : PubMed/NCBI | |
Leavis HL, Bonten MJ and Willems RJ: Identification of high-risk enterococcal clonal complexes: Global dispersion and antibiotic resistance. Curr Opin Microbiol. 9:454–460. 2006. View Article : Google Scholar : PubMed/NCBI | |
Miragaia M, Thomas JC, Couto I, Enright MC and de Lencastre H: Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol. 189:2540–2552. 2007. View Article : Google Scholar : PubMed/NCBI | |
Robinson DA and Enright MC: Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 10:92–97. 2004. View Article : Google Scholar : PubMed/NCBI | |
Robinson DA, Sutcliffe JA, Tewodros W, Manoharan A and Bessen DE: Evolution and global dissemination of macrolide-resistant group A streptococci. Antimicrob Agents Chemother. 50:2903–2911. 2006. View Article : Google Scholar : PubMed/NCBI | |
Löfmark S, Jernberg C, Jansson JK and Edlund C: Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J Antimicrob Chemother. 58:1160–1167. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sjölund M, Tano E, Blaser MJ, Andersson DI and Engstrand L: Persistence of resistant Staphylococcus epidermidis after single course of clarithromycin. Emerg Infect Dis. 11:1389–1393. 2005. View Article : Google Scholar : PubMed/NCBI |