Down syndrome and microRNAs (Review)
- Authors:
- Aldina Brás
- António S. Rodrigues
- Bruno Gomes
- José Rueff
-
Affiliations: Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, NOVA University of Lisbon, 1169‑056 Lisbon, Portugal - Published online on: November 17, 2017 https://doi.org/10.3892/br.2017.1019
- Pages: 11-16
This article is mentioned in:
Abstract
World Health Organization, . Genomic Resource Centre: Genes and human disease. http://www.who.int/genomics/public/geneticdiseases/en/index1.htmlSeptember 4–2017 | |
Hultén MA, Patel S, Jonasson J and Iwarsson E: On the origin of the maternal age effect in trisomy 21 Down syndrome: The Oocyte Mosaicism Selection model. Reproduction. 139:1–9. 2010. View Article : Google Scholar : PubMed/NCBI | |
Speicher MR: ChromosomesVogel and Motulsky's Human Genetics Problems and Approaches. Speicher MR, Antonarakis SE and Motulsky AG: Springer-Verlag; Berlin, Heidelberg: pp. 55–138. 2010, View Article : Google Scholar | |
Lejeune J, Gauthier M and Turpin R: Human chromosomes in tissue cultures. C R Hebd Seances Acad Sci. 248:602–603. 1959.(In French). PubMed/NCBI | |
Mutton D, Alberman E and Hook EB: National Down Syndrome Cytogenetic Register and the Association of Clinical Cytogeneticists: Cytogenetic and epidemiological findings in Down syndrome, England and Wales 1989 to 1993. J Med Genet. 33:387–394. 1996. View Article : Google Scholar : PubMed/NCBI | |
Raoul O, Carpentier S, Dutrillaux B, Mallet R and Lejeune J: Partial trisomy of chromosome 21 by maternal translocation t(15;21) (q26.2; q21). Ann Genet. 19:187–190. 1976.(In French). PubMed/NCBI | |
Rahmani Z, Blouin JL, Créau-Goldberg N, Watkins PC, Mattei JF, Poissonnier M, Prieur M, Chettouh Z, Nicole A, Aurias A, et al: Down syndrome critical region around D21S55 on proximal 21q22.3. Am J Med Genet Suppl. 7:98–103. 1990.PubMed/NCBI | |
Korenberg JR, Chen XN, Schipper R, Sun Z, Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P and Disteche C: Down syndrome phenotypes: The consequences of chromosomal imbalance. Proc Natl Acad Sci USA. 91:pp. 4997–5001. 1994; View Article : Google Scholar : PubMed/NCBI | |
Do C, Xing Z, Yu YE and Tycko B: Trans-acting epigenetic effects of chromosomal aneuploidies: Lessons from Down syndrome and mouse models. Epigenomics. 9:189–207. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim VN: MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol. 6:376–385. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brás A, Monteiro C and Rueff J: Oxidative stress in trisomy 21. A possible role in cataractogenesis. Ophthalmic Paediatr Genet. 10:271–277. 1989. View Article : Google Scholar : PubMed/NCBI | |
Campos C, Guzmán R, López-Fernández E and Casado A: Urinary uric acid and antioxidant capacity in children and adults with Down syndrome. Clin Biochem. 43:228–233. 2010. View Article : Google Scholar : PubMed/NCBI | |
Clinical Cytogenetics: Disorders of the autosomes and the sex chromosomesThompson & Thompson Genetics in Medicine. Nussbaum RL, McInnes RR and Willard HF: Saunders Elsevier; pp. 89–113. 2007, View Article : Google Scholar | |
Ram G and Chinen J: Infections and immunodeficiency in Down syndrome. Clin Exp Immunol. 164:9–16. 2011. View Article : Google Scholar : PubMed/NCBI | |
Freeman SB, Bean LH, Allen EG, Tinker SW, Locke AE, Druschel C, Hobbs CA, Romitti PA, Royle MH, Torfs CP, et al: Ethnicity, sex, and the incidence of congenital heart defects: A report from the National Down Syndrome Project. Genet Med. 10:173–180. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fong CT and Brodeur GM: Down's syndrome and leukemia: Epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genet Cytogenet. 28:55–76. 1987. View Article : Google Scholar : PubMed/NCBI | |
Creutzig U, Ritter J, Vormoor J, Ludwig WD, Niemeyer C, Reinisch I, Stollmann-Gibbels B, Zimmermann M and Harbott J: Myelodysplasia and acute myelogenous leukemia in Down's syndrome. A report of 40 children of the AML-BFM study group. Leukemia. 10:1677–1686. 1996.PubMed/NCBI | |
Hitzler JK and Zipursky A: Origins of leukaemia in children with Down syndrome. Nat Rev Cancer. 5:11–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Satgé D, Sommelet D, Geneix A, Nishi M, Malet P and Vekemans M: A tumor profile in Down syndrome. Am J Med Genet. 78:207–216. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sussan TE, Yang A, Li F, Ostrowski MC and Reeves RH: Trisomy represses Apc(Min)-mediated tumours in mouse models of Down's syndrome. Nature. 451:73–75. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, Lensch MW, Park IH, Yoon SS, Minami T, et al: Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature. 459:1126–1130. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hartley D, Blumenthal T, Carrillo M, DiPaolo G, Esralew L, Gardiner K, Granholm AC, Iqbal K, Krams M, Lemere C, et al: Down syndrome and Alzheimer's disease: Common pathways, common goals. Alzheimers Dement. 11:700–709. 2015. View Article : Google Scholar : PubMed/NCBI | |
Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC and Butler AC: Molecular mapping of Alzheimer-type dementia in Down's syndrome. Ann Neurol. 43:380–383. 1998. View Article : Google Scholar : PubMed/NCBI | |
Murdoch JC, Rodger JC, Rao SS, Fletcher CD and Dunnigan MG: Down's syndrome: An atheroma-free model? BMJ. 2:226–228. 1977. View Article : Google Scholar : PubMed/NCBI | |
Ylä-Herttuala S, Luoma J, Nikkari T and Kivimäki T: Down's syndrome and atherosclerosis. Atherosclerosis. 76:269–272. 1989. View Article : Google Scholar : PubMed/NCBI | |
Vianello E, Dogliotti G, Dozio E and Corsi Romanelli MM: Low heart-type fatty acid binding protein level during aging may protect down syndrome people against atherosclerosis. Immun Ageing. 10:22013. View Article : Google Scholar : PubMed/NCBI | |
Buchin PJ, Levy JS and Schullinger JN: Down's syndrome and the gastrointestinal tract. J Clin Gastroenterol. 8:111–114. 1986. View Article : Google Scholar : PubMed/NCBI | |
Purdy IB, Singh N, Brown WL, Vangala S and Devaskar UP: Revisiting early hypothyroidism screening in infants with Down syndrome. J Perinatol. 34:936–940. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Jeon K, Lee JT, Kim S and Kim VN: MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21:4663–4670. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, et al: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N and Shiekhattar R: The Microprocessor complex mediates the genesis of microRNAs. Nature. 432:235–240. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lund E, Güttinger S, Calado A, Dahlberg JE and Kutay U: Nuclear export of microRNA precursors. Science. 303:95–98. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bernstein E, Caudy AA, Hammond SM and Hannon GJ: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N and Zamore PD: Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115:199–208. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hu W and Coller J: What comes first: Translational repression or mRNA degradation? The deepening mystery of microRNA function. Cell Res. 22:1322–1324. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saito T and Saetrom P: MicroRNAs-targeting and target prediction. N Biotechnol. 27:243–249. 2010. View Article : Google Scholar : PubMed/NCBI | |
Min A, Zhu C, Peng S, Rajthala S, Costea DE and Sapkota D: MicroRNAs as important players and biomarkers in oral carcinogenesis. BioMed Res Int. 2015:1869042015. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li W, Liu X, Chen H, Tan K, Chen Y, Tu Z and Dai Y: Identification of dysregulated microRNAs in lymphocytes from children with Down syndrome. Gene. 530:278–286. 2013a. View Article : Google Scholar | |
Siew WH, Tan KL, Babaei MA, Cheah PS and Ling KH: MicroRNAs and intellectual disability (ID) in Down syndrome, X-linked ID, and Fragile X syndrome. Front Cell Neurosci. 7:412013. View Article : Google Scholar : PubMed/NCBI | |
Alexandrov PN, Percy ME and Lukiw WJ: Chromosome 21-Encoded microRNAs (mRNAs): Impact on Down's syndrome and trisomy-21 linked disease. Cell Mol Neurobiol. July 7–2017.(Epub ahead of print). doi.org/10.1007/s10571-017-0514-0. View Article : Google Scholar : PubMed/NCBI | |
Elton TS, Sansom SE and Martin MM: Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biol. 7:540–547. 2010. View Article : Google Scholar : PubMed/NCBI | |
Elton TS, Selemon H, Elton SM and Parinandi NL: Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 532:1–12. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li YY, Alexandrov PN, Pogue AI, Zhao Y, Bhattacharjee S and Lukiw WJ: miRNA-155 upregulation and complement factor H deficits in Down's syndrome. Neuroreport. 23:168–173. 2012. View Article : Google Scholar : PubMed/NCBI | |
Griffiths MR, Neal JW, Fontaine M, Das T and Gasque P: Complement factor H, a marker of self protects against experimental autoimmune encephalomyelitis. J Immunol. 182:4368–4377. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu HE, Yang YC, Chen SM, Su HL, Huang PC, Tsai MS, Wang TH, Tseng CP and Hwang SM: Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells. Exp Cell Res. 319:498–505. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chao HT, Zoghbi HY and Rosenmund C: MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron. 56:58–65. 2007. View Article : Google Scholar : PubMed/NCBI | |
Keck-Wherley J, Grover D, Bhattacharyya S, Xu X, Holman D, Lombardini ED, Verma R, Biswas R and Galdzicki Z: Abnormal microRNA expression in Ts65Dn hippocampus and whole blood: Contributions to Down syndrome phenotypes. Dev Neurosci. 33:451–467. 2011. View Article : Google Scholar : PubMed/NCBI | |
Billet S, Aguilar F, Baudry C and Clauser E: Role of angiotensin II AT1 receptor activation in cardiovascular diseases. Kidney Int. 74:1379–1384. 2008. View Article : Google Scholar : PubMed/NCBI | |
Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis SE, et al: Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res (Amst). 12:323–337. 2014. View Article : Google Scholar | |
Klusmann JH, Li Z, Böhmer K, Maroz A, Koch ML, Emmrich S, Godinho FJ, Orkin SH and Reinhardt D: miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev. 24:478–490. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J, Zhou H, Qu LH, Xu L and Chen YQ: MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One. 4:e78262009. View Article : Google Scholar : PubMed/NCBI | |
O'Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL and Baltimore D: Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 205:585–594. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, Le Beau MM and Crispino JD: Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 32:148–152. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shaham L, Vendramini E, Ge Y, Goren Y, Birger Y, Tijssen MR, McNulty M, Geron I, Schwartzman O, Goldberg L, et al: MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome. Blood. 125:1292–1301. 2015. View Article : Google Scholar : PubMed/NCBI | |
Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS and Benz CC: Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem. 282:1479–1486. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Xu C, Tang SC, Wang J, Wang H, Wang P, Du N, Qin S, Li G, Xu S, et al: Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther. 23:83–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, et al: The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67:7713–7722. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang PY, Sun YX, Zhang S, Pang M, Zhang HH, Gao SY, Zhang C, Lv CJ and Xie SY: Let-7c inhibits A549 cell proliferation through oncogenic TRIB2 related factors. FEBS Lett. 587:2675–2681. 2013. View Article : Google Scholar : PubMed/NCBI | |
Patja K, Pukkala E, Sund R, Iivanainen M and Kaski M: Cancer incidence of persons with Down syndrome in Finland: A population-based study. Int J Cancer. 118:1769–1772. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, Jensen RV, Moskaluk CA and Dutta A: miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 71:1313–1324. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hasle H: Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol. 2:429–436. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li W, Liu X, Ma H, Tu Z and Dai Y: Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses. Int J Mol Med. 32:1115–1125. 2013b. View Article : Google Scholar | |
Lim JH, Kim DJ, Lee DE, Han JY, Chung JH, Ahn HK, Lee SW, Lim DH, Lee YS, Park SY, et al: Genome-wide microRNA expression profiling in placentas of fetuses with Down syndrome. Placenta. 36:322–328. 2015a. View Article : Google Scholar | |
Liang Y, Ridzon D, Wong L and Chen C: Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 8:1662007. View Article : Google Scholar : PubMed/NCBI | |
Svobodová I, Korabečná M, Calda P, Břešťák M, Pazourková E, Pospíšilová Š, Krkavcová M, Novotná M and Hořínek A: Differentially expressed miRNAs in trisomy 21 placentas. Prenat Diagn. 36:775–784. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lim JH, Lee DE, Kim SY, Kim HJ, Kim KS, Han YJ, Kim MH, Choi JS, Kim MY, Ryu HM, et al: MicroRNAs as potential biomarkers for noninvasive detection of fetal trisomy 21. J Assist Reprod Genet. 32:827–837. 2015b. View Article : Google Scholar | |
Shi WL, Liu ZZ, Wang HD, Wu D, Zhang H, Xiao H, Chu Y, Hou QF and Liao SX: Integrated miRNA and mRNA expression profiling in fetal hippocampus with Down syndrome. J Biomed Sci. 23:482016. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li Z, Song X, Liu L, Su G and Cui Y: Bioinformatic analysis of genes and microRNAs associated with atrioventricular septal defect in Down syndrome patients. Int Heart J. 57:490–495. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Sui W, Li W, Tan Q, Chen J, Lin X, Guo H, Ou M, Xue W, Zhang R, et al: Integrated microRNA and protein expression analysis reveals novel microRNA regulation of targets in fetal down syndrome. Mol Med Rep. 14:4109–4118. 2016. View Article : Google Scholar : PubMed/NCBI | |
Arena A, Iyer AM, Milenkovic I, Kovács GG, Ferrer I, Perluigi M and Aronica E: Developmental expression and dysregulation of miR-146a and miR-155 in Down's syndrome and mouse models of Down's syndrome and Alzheimer's disease. Curr Alzheimer Res. 14:July 6–2017.(Epub ahead of print). doi.org/10.2174/1567205014666170706112701. View Article : Google Scholar : PubMed/NCBI | |
Nguyen LS, Lepleux M, Makhlouf M, Martin C, Fregeac J, Siquier-Pernet K, Philippe A, Feron F, Gepner B, Rougeulle C, et al: Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Mol Autism. 7:12016. View Article : Google Scholar : PubMed/NCBI |