Roles of toll-like receptors: From inflammation to lung cancer progression (Review)
- Authors:
- Jinjing Gu
- Yi Liu
- Bin Xie
- Pingping Ye
- Jiefan Huang
- Zhe Lu
-
Affiliations: School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China, School of Science, Hangzhou Normal University, Hangzhou, Zhejiang 310016, P.R. China - Published online on: December 28, 2017 https://doi.org/10.3892/br.2017.1034
- Pages: 126-132
-
Copyright: © Gu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lemjabbar-Alaoui H, Hassan OU, Yang YW and Buchanan P: Lung cancer: Biology and treatment options. Biochim Biophys Acta. 1856:189–210. 2015.PubMed/NCBI | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar : PubMed/NCBI | |
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Broz P and Monack DM: Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol. 13:551–565. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pinto A, Morello S and Sorrentino R: Lung cancer and Toll-like receptors. Cancer Immunol Immunother. 60:1211–1220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pradere JP, Dapito DH and Schwabe RF: The Yin and Yang of Toll-like receptors in cancer. Oncogene. 33:3485–3495. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang LS, Wu WS, Zhang F, Jiang Y, Fan Y, Fang HX and Long J: Role of toll-like receptors in lung cancer. J Recept Signal Transduct Res. 34:342–344. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rakoff-Nahoum S and Medzhitov R: Toll-like receptors and cancer. Nat Rev Cancer. 9:57–63. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kay E, Scotland RS and Whiteford JR: Toll-like receptors: Role in inflammation and therapeutic potential. Biofactors. 40:284–294. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kawai T and Akira S: The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol. 11:373–384. 2010. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F and Mantovani A: Inflammation and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI | |
Keibel A, Singh V and Sharma MC: Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des. 15:1949–1955. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hussain SP and Harris CC: Inflammation and cancer: An ancient link with novel potentials. Int J Cancer. 121:2373–2380. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R and Ahmad N: Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm. 2015:2017032015. View Article : Google Scholar : PubMed/NCBI | |
Payen VL, Porporato PE, Baselet B and Sonveaux P: Metabolic changes associated with tumor metastasis, part 1: Tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci. 73:1333–1348. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bartsch H and Nair J: Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 391:499–510. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ameille J, Brochard P, Letourneux M, Paris C and Pairon JC: Asbestos-related cancer risk in patients with asbestosis or pleural plaques. Rev Mal Respir. 28:e11–e17. 2011. View Article : Google Scholar : PubMed/NCBI | |
Łagiedo M, Sikora J and Kaczmarek M: Damage-associated molecular patterns in the course of lung cancer - A review. Scand J Immunol. 82:95–101. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cherfils-Vicini J, Platonova S, Gillard M, Laurans L, Validire P, Caliandro R, Magdeleinat P, Mami-Chouaib F, Dieu-Nosjean MC, Fridman WH, et al: Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest. 120:1285–1297. 2010. View Article : Google Scholar : PubMed/NCBI | |
Droemann D, Albrecht D, Gerdes J, Ulmer AJ, Branscheid D, Vollmer E, Dalhoff K, Zabel P and Goldmann T: Human lung cancer cells express functionally active Toll-like receptor 9. Respir Res. 6:12005. View Article : Google Scholar : PubMed/NCBI | |
Zhang YB, He FL, Fang M, Hua TF, Hu BD, Zhang ZH, Cao Q and Liu RY: Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Mol Biol Rep. 36:1475–1481. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Chen JH, Hu J, Luo YZ, Li F, Xiao L and Zhong MZ: High expression of Toll-like receptor 5 correlates with better prognosis in non-small-cell lung cancer: An anti-tumor effect of TLR5 signaling in non-small cell lung cancer. J Cancer Res Clin Oncol. 140:633–643. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li D, Jin Y, Sun Y, Lei J and Liu C: Knockdown of toll-like receptor 4 inhibits human NSCLC cancer cell growth and inflammatory cytokine secretion in vitro and in vivo. Int J Oncol. 45:813–821. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee S, Crozet L, Damotte D, Iribarren K, Schramm C, Alifano M, Lupo A, Cherfils-Vicini J, Goc J, Katsahian S, et al: TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non-small cell lung cancer. Cancer Res. 74:5008–5018. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen YC, Hsiao CC, Chen CJ, Chao TY, Leung SY, Liu SF, Wang CC, Wang TY, Chang JC, Wu CC, et al: Aberrant Toll-like receptor 2 promoter methylation in blood cells from patients with pulmonary tuberculosis. J Infect. 69:546–557. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shuto T, Furuta T, Oba M, Xu H, Li JD, Cheung J, Gruenert DC, Uehara A, Suico MA, Okiyoneda T, et al: Promoter hypomethylation of Toll-like receptor-2 gene is associated with increased proinflammatory response toward bacterial peptidoglycan in cystic fibrosis bronchial epithelial cells. FASEB J. 20:782–784. 2006. View Article : Google Scholar : PubMed/NCBI | |
Benakanakere M, Abdolhosseini M, Hosur K, Finoti LS and Kinane DF: TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res. 94:183–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Porrás A, Kozar S, Russanova V, Salpea P, Hirai T, Sammons N, Mittal P, Kim JY, Ozato K, Romero R, et al: Developmental and epigenetic regulation of the human TLR3 gene. Mol Immunol. 46:27–36. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Sugi Y, Hosono A and Kaminogawa S: Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis. J Immunol. 183:6522–6529. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim TW, Lee SJ, Oh BM, Lee H, Uhm TG, Min JK, Park YJ, Yoon SR, Kim BY, Kim JW, et al: Epigenetic modification of TLR4 promotes activation of NF-κB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer. Oncotarget. 7:4195–4209. 2016.PubMed/NCBI | |
Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cho WC: OncomiRs: The discovery and progress of microRNAs in cancers. Mol Cancer. 6:602007. View Article : Google Scholar : PubMed/NCBI | |
Lu TX, Munitz A and Rothenberg ME: MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 182:4994–5002. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG and Lindsay MA: Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics. 8:2402007. View Article : Google Scholar : PubMed/NCBI | |
Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, OLeary JJ, Ruan Q, Johnson DS, Chen Y and ONeill LA: Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 11:141–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen XM, Splinter PL, OHara SP and LaRusso NF: A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem. 282:28929–28938. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang W, Wu B, Liu Y, Li D, Guo Y, Fu H and Li Y: KDM3A promotes inhibitory cytokines secretion by participating in TLR4 regulation of Foxp3 transcription in lung adenocarcinoma cells. Oncol Lett. 13:3529–3537. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cotter TG: Apoptosis and cancer: The genesis of a research field. Nat Rev Cancer. 9:501–507. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hattar K, Savai R, Subtil FS, Wilhelm J, Schmall A, Lang DS, Goldmann T, Eul B, Dahlem G, Fink L, et al: Endotoxin induces proliferation of NSCLC in vitro and in vivo: Role of COX-2 and EGFR activation. Cancer Immunol Immunother. 62:309–320. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang C, Shan S, Liu X, Jiang Z and Ren T: TLR4/ROS/miRNA-21 pathway underlies lipopolysaccharide instructed primary tumor outgrowth in lung cancer patients. Oncotarget. 7:42172–42182. 2016.PubMed/NCBI | |
Xu X, Zhu H, Wang T, Sun Y, Ni P, Liu Y, Tian S, Amoah Barnie P, Shen H, Xu W, et al: Exogenous high-mobility group box 1 inhibits apoptosis and promotes the proliferation of lewis cells via RAGE/TLR4-dependent signal pathways. Scand J Immunol. 79:386–394. 2014. View Article : Google Scholar : PubMed/NCBI | |
He W, Liu Q, Wang L, Chen W, Li N and Cao X: TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 44:2850–2859. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC and Xiong H: Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 65:5009–5014. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hattar K, Reinert CP, Sibelius U, Gökyildirim MY, Subtil FSB, Wilhelm J, Eul B, Dahlem G, Grimminger F, Seeger W, et al: Lipoteichoic acids from Staphylococcus aureus stimulate proliferation of human non-small-cell lung cancer cells in vitro. Cancer Immunol Immunother. 66:799–809. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Wang C, Wen Z, Yao X, Liu Z, Li Q, Wu Z, Xu Z, Liang Y and Ren T: Selective up-regulation of CDK2 is critical for TLR9 signaling stimulated proliferation of human lung cancer cell. Immunol Lett. 127:93–99. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou SX, Li FS, Qiao YL, Zhang XQ and Wang ZD: Toll-like receptor 5 agonist inhibition of growth of A549 lung cancer cells in vivo in a Myd88 dependent manner. Asian Pac J Cancer Prev. 13:2807–2812. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pandya NM, Dhalla NS and Santani DD: Angiogenesis - a new target for future therapy. Vascul Pharmacol. 44:265–274. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y and Adjei AA: Targeting angiogenesis in cancer therapy: Moving beyond vascular endothelial growth factor. Oncologist. 20:660–673. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dey G, Bharti R, Ojha PK, Pal I, Rajesh Y, Banerjee I, Banik P, Parida S, Parekh A, Sen R, et al: Therapeutic implication of ‘Iturin A’ for targeting MD-2/TLR4 complex to overcome angiogenesis and invasion. Cell Signal. 35:24–36. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shin JM, Park JH, Kim HJ, Park IH and Lee HM: Cigarette smoke extract increases vascular endothelial growth factor production via TLR4/ROS/MAPKs/NF-kappaB pathway in nasal fibroblast. Am J Rhinol Allergy. 31:78–84. 2017. View Article : Google Scholar : PubMed/NCBI | |
Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C, Bouchier-Hayes D and Dong Z: Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer. 101:415–422. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ren T, Xu L, Jiao S, Wang Y, Cai Y, Liang Y, Zhou Y, Zhou H and Wen Z: TLR9 signaling promotes tumor progression of human lung cancer cell in vivo. Pathol Oncol Res. 15:623–630. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hatanaka H, Abe Y, Naruke M, Tokunaga T, Oshika Y, Kawakami T, Osada H, Nagata J, Kamochi J, Tsuchida T, et al: Significant correlation between interleukin 10 expression and vascularization through angiopoietin/TIE2 networks in non-small cell lung cancer. Clin Cancer Res. 7:1287–1292. 2001.PubMed/NCBI | |
Damiano V, Caputo R, Bianco R, DArmiento FP, Leonardi A, De Placido S, Bianco AR, Agrawal S, Ciardiello F and Tortora G: Novel toll-like receptor 9 agonist induces epidermal growth factor receptor (EGFR) inhibition and synergistic antitumor activity with EGFR inhibitors. Clin Cancer Res. 12:577–583. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhan Z, Xie X, Cao H, Zhou X, Zhang XD, Fan H and Liu Z: Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 10:257–268. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chow SC, Gowing SD, Cools-Lartigue JJ, Chen CB, Berube J, Yoon HW, Chan CH, Rousseau MC, Bourdeau F, Giannias B, et al: Gram negative bacteria increase non-small cell lung cancer metastasis via Toll-like receptor 4 activation and mitogen-activated protein kinase phosphorylation. Int J Cancer. 136:1341–1350. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li C, Li H, Jiang K, Li J and Gai X: TLR4 signaling pathway in mouse Lewis lung cancer cells promotes the expression of TGF-β1 and IL-10 and tumor cells migration. Biomed Mater Eng. 24:869–875. 2014.PubMed/NCBI | |
Zhu J, Luo J, Li Y, Jia M, Wang Y, Huang Y and Ke S: HMGB1 induces human non-small cell lung cancer cell motility by activating integrin αvβ3/FAK through TLR4/NF-κB signaling pathway. Biochem Biophys Res Commun. 480:522–527. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ren T, Wen ZK, Liu ZM, Liang YJ, Guo ZL and Xu L: Functional expression of TLR9 is associated to the metastatic potential of human lung cancer cell: Functional active role of TLR9 on tumor metastasis. Cancer Biol Ther. 6:1704–1709. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jiang DS, Wang YW, Jiang J, Li SM, Liang SZ and Fang HY: MicroRNA-26a involved in Toll-like receptor 9 mediated lung cancer growth and migration. Int J Mol Med. 34:307–312. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Wen Z, Zhou Y, Liu Z, Li Q, Fei G, Luo J and Ren T: MicroRNA-7-regulated TLR9 signaling-enhanced growth and metastatic potential of human lung cancer cells by altering the phosphoinositide-3-kinase, regulatory subunit 3/Akt pathway. Mol Biol Cell. 24:42–55. 2013. View Article : Google Scholar : PubMed/NCBI | |
Magee JA, Piskounova E and Morrison SJ: Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell. 21:283–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Visvader JE and Lindeman GJ: Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yeh DW, Huang LR, Chen YW, Huang CF and Chuang TH: Interplay between inflammation and stemness in cancer cells: The role of Toll-like receptor signaling. J Immunol Res. 2016:43681012016. View Article : Google Scholar : PubMed/NCBI | |
Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ, et al: Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 9:R832008. View Article : Google Scholar : PubMed/NCBI | |
Garner JM, Fan M, Yang CH, Du Z, Sims M, Davidoff AM and Pfeffer LM: Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J Biol Chem. 288:26167–26176. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rajasekhar VK, Studer L, Gerald W, Socci ND and Scher HI: Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nat Commun. 2:1622011. View Article : Google Scholar : PubMed/NCBI | |
Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, Chi L, Filion LG, Figeys D and Wang L: β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 22:298–310. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao XL, Lin Y, Jiang J, Tang Z, Yang S, Lu L, Liang Y, Liu X, Tan J, Hu XG, et al: High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. J Pathol. 243:376–389. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ren X, Wang F, Ji B and Gao C: TLR7 agonist induced repression of hepatocellular carcinoma via the TLR7-IKK-NF-κB-IL6 signaling pathway. Oncol Lett. 11:2965–2970. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sahu U, Choudhury A, Parvez S, Biswas S and Kar S: Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 8:e26672017. View Article : Google Scholar : PubMed/NCBI | |
Alvarado AG, Thiagarajan PS, Mulkearns-Hubert EE, Silver DJ, Hale JS, Alban TJ, Turaga SM, Jarrar A, Reizes O, Longworth MS, et al: Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell stem cell. 20:450–461. 2017. View Article : Google Scholar : PubMed/NCBI | |
Finocchiaro G: TLRgeting evasion of immune pathways in glioblastoma. Cell Stem Cell. 20:422–424. 2017. View Article : Google Scholar : PubMed/NCBI | |
Herr HW and Morales A: History of bacillus Calmette-Guerin and bladder cancer: An immunotherapy success story. J Urol. 179:53–56. 2008. View Article : Google Scholar : PubMed/NCBI | |
Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, et al HPV PATRICIA Study Group, : Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): Final analysis of a double-blind, randomised study in young women. Lancet. 374:301–314. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang YC, Madkan V, Cook-Norris R, Sra K and Tyring S: Current and potential uses of imiquimod. South Med J. 98:914–920. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kanzler H, Barrat FJ, Hessel EM and Coffman RL: Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med. 13:552–559. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G and Galluzzi L: Trial Watch: Toll-like receptor agonists for cancer therapy. OncoImmunology. 2:e252382013. View Article : Google Scholar : PubMed/NCBI |