1
|
Liu T, Li H, Gounko NV, Zhou Z, Xu A, Hong
W and Han W: Detection of insulin granule exocytosis by an
electrophysiology method with high temporal resolution reveals
enlarged insulin granule pool in BIG3-knockout mice. Am J Physiol
Endocrinol Metab. 307:E611–E618. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li J, Cantley J, Burchfield JG, Meoli CC,
Stöckli J, Whitworth PT, Pant H, Chaudhuri R, Groffen AJ, Verhage
M, et al: DOC2 isoforms play dual roles in insulin secretion and
insulin-stimulated glucose uptake. Diabetologia. 57:2173–2182.
2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jewell JL, Oh E and Thurmond DC:
Exocytosis mechanisms underlying insulin release and glucose
uptake: Conserved roles for Munc18c and syntaxin 4. Am J Physiol
Regul Integr Comp Physiol. 298:R517–R531. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Südhof TC and Rothman JE: Membrane fusion:
Grappling with SNARE and SM proteins. Science. 323:474–477. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hong W: SNAREs and traffic. Biochim
Biophys Acta. 1744:493–517. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jahn R: Sec1/Munc18 proteins: Mediators of
membrane fusion moving to center stage. Neuron. 27:201–204. 2000.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ulloa F, Gonzàlez-Juncà A, Meffre D,
Barrecheguren PJ, Martínez-Mármol R, Pazos I, Olivé N, Cotrufo T,
Seoane J and Soriano E: Blockade of the SNARE protein syntaxin 1
inhibits glioblastoma tumor growth. PLoS One. 10:e01197072015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Alonso-Curbelo D, Riveiro-Falkenbach E,
Pérez-Guijarro E, Cifdaloz M, Karras P, Osterloh L, Megías D, Cañón
E, Calvo TG, Olmeda D, et al: RAB7 controls melanoma progression by
exploiting a lineage-specific wiring of the endolysosomal pathway.
Cancer Cell. 26:61–76. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Torii S, Takeuchi T, Nagamatsu S and Izumi
T: Rab27 effector granuphilin promotes the plasma membrane
targeting of insulin granules via interaction with syntaxin 1a. J
Biol Chem. 279:22532–22538. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin RC and Scheller RH: Mechanisms of
synaptic vesicle exocytosis. Annu Rev Cell Dev Biol. 16:19–49.
2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk
N, Takamori S, Matti U, Rettig J, Südhof T and Bruns D: v-SNAREs
control exocytosis of vesicles from priming to fusion. EMBO J.
24:2114–2126. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Müller HK, Kragballe M, Fjorback AW and
Wiborg O: Differential regulation of the serotonin transporter by
vesicle-associated membrane protein 2 in cells of neuronal versus
non-neuronal origin. PLoS One. 9:e975402014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nagamatsu S, Nakamichi Y, Watanabe T,
Matsushima S, Yamaguchi S, Ni J, Itagaki E and Ishida H:
Localization of cellubrevin-related peptide, endobrevin, in the
early endosome in pancreatic beta cells and its physiological
function in exo-endocytosis of secretory granules. J Cell Sci.
114:219–227. 2001.PubMed/NCBI
|
14
|
Antonin W, Holroyd C, Tikkanen R, Höning S
and Jahn R: The R-SNARE endobrevin/VAMP-8 mediates homotypic fusion
of early endosomes and late endosomes. Mol Biol Cell. 11:3289–3298.
2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Forgac M: Vacuolar ATPases: Rotary proton
pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol.
8:917–929. 2007. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Toei M, Saum R and Forgac M: Regulation
and isoform function of the V-ATPases. Biochemistry. 49:4715–4723.
2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Morel N: Neurotransmitter release: The
dark side of the vacuolar-H+ATPase. Biol Cell.
95:453–457. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Poëa-Guyon S, Amar M, Fossier P and Morel
N: Alternative splicing controls neuronal expression of v-ATPase
subunit a1 and sorting to nerve terminals. J Biol Chem.
281:17164–17172. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Camacho M, Machado JD, Montesinos MS,
Criado M and Borges R: Intragranular pH rapidly modulates
exocytosis in adrenal chromaffin cells. J Neurochem. 96:324–334.
2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Di Giovanni J, Boudkkazi S, Mochida S,
Bialowas A, Samari N, Lévêque C, Youssouf F, Brechet A, Iborra C,
Maulet Y, et al: V-ATPase membrane sector associates with
synaptobrevin to modulate neurotransmitter release. Neuron.
67:268–279. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ahmad A, Khundmiri SJ, Pribble F, Merchant
ML, Ameen M, Klein JB, Levi M and Lederer ED: Role of vacuolar
ATPase in the trafficking of renal type IIa sodium-phosphate
cotransporter. Cell Physiol Biochem. 27:703–714. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kwan EP and Gaisano HY: Rescuing the
subprime meltdown in insulin exocytosis in diabetes. Ann N Y Acad
Sci. 1152:154–164. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kwan EP, Xie L, Sheu L, Nolan CJ, Prentki
M, Betz A, Brose N and Gaisano HY: Munc13-1 deficiency reduces
insulin secretion and causes abnormal glucose tolerance. Diabetes.
55:1421–1429. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu D, Zhang Y, Lam PP, Dolai S, Liu Y,
Cai EP, Choi D, Schroer SA, Kang Y, Allister EM, et al: Dual role
of VAMP8 in regulating insulin exocytosis and islet β cell growth.
Cell Metab. 16:238–249. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mandic SA, Skelin M, Johansson JU, Rupnik
MS, Berggren PO and Bark C: Munc18-1 and Munc18-2 proteins modulate
beta-cell Ca2+ sensitivity and kinetics of insulin
exocytosis differently. J Biol Chem. 286:28026–28040. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Parsaud L, Li L, Jung CH, Park S, Saw NM,
Park S, Kim MY and Sugita S: Calcium-dependent activator protein
for secretion 1 (CAPS1) binds to syntaxin-1 in a distinct mode from
Munc13-1. J Biol Chem. 288:23050–23063. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Brunner Y, Couté Y, Iezzi M, Foti M,
Fukuda M, Hochstrasser DF, Wollheim CB and Sanchez JC: Proteomics
analysis of insulin secretory granules. Mol Cell Proteomics.
6:1007–1017. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jordens I, Marsman M, Kuijl C and Neefjes
J: Rab proteins, connecting transport and vesicle fusion. Traffic.
6:1070–1077. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Iezzi M, Escher G, Meda P, Charollais A,
Baldini G, Darchen F, Wollheim CB and Regazzi R: Subcellular
distribution and function of Rab3A, B, C, and D isoforms in
insulin-secreting cells. Mol Endocrinol. 13:202–212. 1999.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Waselle L, Coppola T, Fukuda M, Iezzi M,
El-Amraoui A, Petit C and Regazzi R: Involvement of the Rab27
binding protein Slac2c/MyRIP in insulin exocytosis. Mol Biol Cell.
14:4103–4113. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang SN and Berggren PO: Beta-cell CaV
channel regulation in physiology and pathophysiology. Am J Physiol
Endocrinol Metab. 288:E16–E28. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gremlich S, Porret A, Hani EH, Cherif D,
Vionnet N, Froguel P and Thorens B: Cloning, functional expression,
and chromosomal localization of the human pancreatic islet
glucose-dependent insulinotropic polypeptide receptor. Diabetes.
44:1202–1208. 1995. View Article : Google Scholar : PubMed/NCBI
|
33
|
Thorens B: Expression cloning of the
pancreatic beta cell receptor for the gluco-incretin hormone
glucagon-like peptide 1. Proc Natl Acad Sci USA. 89:8641–8645.
1992. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dominguez V, Raimondi C, Somanath S,
Bugliani M, Loder MK, Edling CE, Divecha N, da Silva-Xavier G,
Marselli L, Persaud SJ, et al: Class II phosphoinositide 3-kinase
regulates exocytosis of insulin granules in pancreatic beta cells.
J Biol Chem. 286:4216–4225. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Guo L, Li Q, Wang W, Yu P, Pan H, Li P,
Sun Y and Zhang J: Apelin inhibits insulin secretion in pancreatic
beta-cells by activation of PI3-kinase-phosphodiesterase 3B. Endocr
Res. 34:142–154. 2009. View Article : Google Scholar : PubMed/NCBI
|