1
|
American Diabetes Association, . Diagnosis
and classification of diabetes mellitus. Diabetes Care. 37 Suppl
1:S81–S90. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
World Health Organization, . Global health
risks: Mortality and burden of disease attributable to selected
major risks. Geneva: 2009
|
3
|
Hernandez AM: PROYECTO de Modificación a
la Norma Oficial Mexicana NOM-015-SSA2-1994, Para la prevención,
tratamiento y control de la diabetes; para quedar como Norma
Oficial Mexicana PROY-NOM-015-SSA2-2007, Para la prevención,
tratamiento y control de la diabetes mellitus. Diario Oficial de la
Federación, Mexico. http://legismex.mty.itesm.mx/normas/ssa2/ssa2015-09pm.pdfOct
20–2009
|
4
|
Robles AG Navarro, astañeda Vargas JC,
Mittilo B Alam, et al: Agenda Estadística 2010. Journal.
171:20102011.
|
5
|
Jiménez-Corona A, Aguilar-Salinas CA,
Rojas-Martínez R and Hernández-Ávila M: Type 2 diabetes and
frecuency of prevention and control measures. Salud Publica Mex. 55
Suppl 2:S137–S143. 2013.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
6
|
Rodríguez Bolaños Rde L, Shigematsu LM
Reynales, Jiménez Ruíz JA, Juárez Márquezy SA and Hernández Ávila
M: Direct costs of medical care for patients with type 2 diabetes
mellitus in Mexico micro-costing analysis. Rev Panam Salud Publica.
28:412–420. 2010.(In Spanish). PubMed/NCBI
|
7
|
Singh S, Usman K and Banerjee M:
Pharmacogenetic studies update in type 2 diabetes mellitus. World J
Diabetes. 7:302–315. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Glamočlija U and Jevrić-Čaušević A:
Genetic polymorphisms in diabetes: influence on therapy with oral
antidiabetics. Acta Pharm. 60:387–406. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kota SK, Meher LK, Jammula S, Kota SK and
Modi KD: Genetics of type 2 diabetes mellitus and other specific
types of diabetes; its role in treatment modalities. Diabetes Metab
Syndr. 6:54–58. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
UK Prospective Diabetes Study (UKPDS)
Group, . Intensive blood-glucose control with sulphonylureas or
insulin compared with conventional treatment and risk of
complications in patients with type 2 diabetes (UKPDS 33). Lancet.
352:837–853. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kirpichnikov D, McFarlane SI and Sowers
JR: Metformin: An update. Ann Intern Med. 137:25–33. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Bennett WL, Maruthur NM, Singh S, Segal
JB, Wilson LM, Chatterjee R, Marinopoulos SS, Puhan MA, Ranasinghe
P, Block L, et al: Comparative effectiveness and safety of
medications for type 2 diabetes: An update including new drugs and
2-drug combinations. Ann Intern Med. 154:602–613. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Maruthur NM, Tseng E, Hutfless S, Wilson
LM, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal JB and Bolen
S: Diabetes medications as monotherapy or metformin-based
combination therapy for type 2 diabetes: A systematic review and
meta-analysis. Ann Intern Med. 164:740–751. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Klein-Schwartz W, Stassinos GL and
Isbister GK: Treatment of sulfonylurea and insulin overdose. Br J
Clin Pharmacol. 81:496–504. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lim PC and Chong CP: What's next after
metformin? focus on sulphonylurea: Add-on or combination therapy.
Pharm Pract (Granada). 13:6062015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Altagracia-Martínez M, Kravzov J, Md R
Moreno, et al: Diabetes Mellitus Tipo2: Ventas de los
Hipoglucemiantes Orales y Costos de los Tratamientos Farmacológicos
en México. Rev Mex Cienc Farm. 38:23–33. 2007.
|
17
|
Díaz de León-Castañeda C,
Altagracia-Martínez M, Kravzov-Jinich J, Cárdenas-Elizalde Mdel R,
Moreno-Bonett C and Martínez-Núñez JM: Cost-effectiveness study of
oral hypoglycemic agents in the treatment of outpatients with type
2 diabetes attending a public primary care clinic in Mexico City.
Clinicoecon Outcomes Res. 4:57–65. 2012.PubMed/NCBI
|
18
|
Loganadan NK, Huri HZ, Vethakkan SR and
Hussein Z: Genetic markers predicting sulphonylurea treatment
outcomes in type 2 diabetes patients: Current evidence and
challenges for clinical implementation. Pharmacogenomics J.
16:209–219. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dawed AY, Zhou K and Pearson ER:
Pharmacogenetics in type 2 diabetes: Influence on response to oral
hypoglycemic agents. Pharmgenomics Pers Med. 9:17–29.
2016.PubMed/NCBI
|
20
|
Gloyn AL and McCarthy MI: The genetics of
type 2 diabetes. Best Pract Res Clin Endocrinol Metab. 15:293–308.
2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Auton A, Brooks LD, Durbin RM, Garrison
EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA and
Abecasis GR: 1000 Genomes Project Consortium: A global reference
for human genetic variation. Nature. 526:68–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hernandez-Escalante VM, Nava-Gonzalez EJ,
Voruganti VS, Kent JW, Haack K, Laviada-Molina HA, Molina-Segui F,
Gallegos-Cabriales EC, Lopez-Alvarenga JC, Cole SA, et al:
Replication of obesity and diabetes-related SNP associations in
individuals from Yucatán, México. Front Genet. 5:3802014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Lara-Riegos JC, Ortiz-López MG,
Peña-Espinoza BI, Montúfar-Robles I, Peña-Rico MA, Sánchez-Pozos K,
Granados-Silvestre MA and Menjivar M: Diabetes susceptibility in
Mayas: Evidence for the involvement of polymorphisms in HHEX,
HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2,
ABCA1 and SLC16A11 genes. Gene. 565:68–75. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
He YY, Zhang R, Shao XY, Hu C, Wang CR, Lu
JX, Bao YQ, Jia WP and Xiang KS: Association of KCNJ11 and ABCC8
genetic polymorphisms with response to repaglinide in Chinese
diabetic patients. Acta Pharmacol Sin. 29:983–989. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yokoi N, Kanamori M, Horikawa Y, Takeda J,
Sanke T, Furuta H, Nanjo K, Mori H, Kasuga M, Hara K, et al:
Association studies of variants in the genes involved in pancreatic
beta-cell function in type 2 diabetes in Japanese subjects.
Diabetes. 55:2379–2386. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rastegari A, Rabbani M, Sadeghi HM, Imani
EF, Hasanzadeh A and Moazen F: Association of KCNJ11 (E23K) gene
polymorphism with susceptibility to type 2 diabetes in Iranian
patients. Adv Biomed Res. 4:12015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Holstein A, Hahn M, Stumvoll M and Kovacs
P: The E23K variant of KCNJ11 and the risk for severe
sulfonylurea-induced hypoglycemia in patients with type 2 diabetes.
Horm Metab Res. 41:387–390. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield
R, Wiltshire S and Turner RC; UK Prospective Diabetes Study (UKPDS
53), : Association studies of variants in promoter and coding
regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2
with type 2 diabetes mellitus (UKPDS 53). Diabet Med. 18:206–212.
2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sesti G, Laratta E, Cardellini M,
Andreozzi F, Del Guerra S, Irace C, Gnasso A, Grupillo M, Lauro R,
Hribal ML, et al: The E23K variant of KCNJ11 encoding the
pancreatic beta-cell adenosine 5′-triphosphate-sensitive potassium
channel subunit Kir6.2 is associated with an increased risk of
secondary failure to sulfonylurea in patients with type 2 diabetes.
J Clin Endocrinol Metab. 91:2334–2339. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ragia G, Tavridou A, Petridis I and
Manolopoulos VG: Association of KCNJ11 E23K gene polymorphism with
hypoglycemia in sulfonylurea-treated type 2 diabetic patients.
Diabetes Res Clin Pract. 98:119–124. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Javorsky M, Klimcakova L, Schroner Z,
Zidzik J, Babjakova E, Fabianova M, Kozarova M, Tkacova R,
Salagovic J and Tkac I: KCNJ11 gene E23K variant and therapeutic
response to sulfonylureas. Eur J Intern Med. 23:245–249. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Klen J, Dolžan V and Janež A: CYP2C9,
KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea
treatment in type 2 diabetes patients. Eur J Clin Pharmacol.
70:421–428. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nikolac N, Simundic AM, Katalinic D, Topic
E, Cipak A and Rotkvic V Zjacic: Metabolic control in type 2
diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not
with KCNJ11 polymorphisms. Arch Med Res. 40:387–392. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chistiakov DA, Potapov VA, Khodirev DC,
Shamkhalova MS, Shestakova MV and Nosikov VV: Genetic variations in
the pancreatic ATP-sensitive potassium channel, beta-cell
dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol.
46:43–49. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sokolova EA, Bondar IA, Shabelnikova OY,
Pyankova OV and Filipenko ML: Replication of KCNJ11 (p.E23K) and
ABCC8 (p.S1369A) association in Russian diabetes mellitus 2 type
cohort and meta-analysis. PLoS One. 10:e01246622015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Matharoo K, Arora P and Bhanwer AJ:
Association of adiponectin (AdipoQ) and sulphonylurea receptor
(ABCC8) gene polymorphisms with type 2 diabetes in North Indian
population of Punjab. Gene. 527:228–234. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dworacka M, Winiarska H and Jagodziński
PP: Impact of the sulfonylurea receptor 1 (SUR1) exon 16-3c/t
polymorphism on acute hyperglycaemia in type 2 diabetic patients.
Diabetes Res Clin Pract. 77:258–262. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang H, Liu X, Kuang H, Yi R and Xing H:
Association of sulfonylurea receptor 1 genotype with therapeutic
response to gliclazide in type 2 diabetes. Diabetes Res Clin Pract.
77:58–61. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rojas W, Parra MV, Campo O, Caro MA,
Lopera JG, Arias W, Duque C, Naranjo A, García J, Vergara C, et al:
Genetic make up and structure of Colombian populations by means of
uniparental and biparental DNA markers. Am J Phys Anthropol.
143:13–20. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ossa H, Aquino J, Pereira R, Ibarra A,
Ossa RH, Pérez LA, Granda JD, Lattig MC, Groot H, de Carvalho E
Fagundes, et al: Outlining the ancestry landscape of Colombian
admixed populations. PLoS One. 11:e01644142016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Homburger JR, Moreno-Estrada A, Gignoux
CR, Nelson D, Sanchez E, Ortiz-Tello P, Pons-Estel BA,
Acevedo-Vasquez E, Miranda P, Langefeld CD, et al: Genomic insights
into the ancestry and demographic history of South America. PLoS
Genet. 11:e10056022015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Florez JC, Burtt N, De Bakker PI, Almgren
P, Tuomi T, Holmkvist J, Gaudet D, Hudson TJ, Schaffner SF, Daly
MJ, et al: Haplotype structure and genotype-phenotype correlations
of the sulfonylurea receptor and the islet ATP-sensitive potassium
channel gene region. Diabetes. 53:1360–1368. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Gloyn AL, Weedon MN, Owen KR, Turner MJ,
Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, et
al: Large-scale association studies of variants in genes encoding
the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and
SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated
with type 2 diabetes. Diabetes. 52:568–572. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Schwanstecher C, Meyer U and Schwanstecher
M: K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing
overactivity of pancreatic beta-cell ATP-sensitive K(+) channels.
Diabetes. 51:875–879. 2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hamming KS, Soliman D, Matemisz LC, Niazi
O, Lang Y, Gloyn AL and Light PE: Coexpression of the type 2
diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A
alter the ATP and sulfonylurea sensitivities of the ATP-sensitive
K(+) channel. Diabetes. 58:2419–2424. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lang VY, Fatehi M and Light PE:
Pharmacogenomic analysis of ATP-sensitive potassium channels
coexpressing the common type 2 diabetes risk variants E23K and
S1369A. Pharmacogenet Genomics. 22:206–214. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Inoue H, Ferrer J, Welling CM, Elbein SC,
Hoffman M, Mayorga R, Warren-Perry M, Zhang Y, Millns H, Turner R,
et al: Sequence variants in the sulfonylurea receptor (SUR) gene
are associated with NIDDM in Caucasians. Diabetes. 45:825–831.
1996. View Article : Google Scholar : PubMed/NCBI
|
48
|
Hart LM, De Knijff P, Dekker JM, Stolk RP,
Nijpels G, van der Does FE, Ruige JB, Grobbee DE, Heine RJ and
Maassen JA: Variants in the sulphonylurea receptor gene:
Association of the exon 16-3t variant with type II diabetes
mellitus in Dutch Caucasians. Diabetologia. 42:617–620. 1999.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Meirhaeghe A, Helbecque N, Cottel D,
Arveiler D, Ruidavets JB, Haas B, Ferrières J, Tauber JP, Bingham A
and Amouyel P: Impact of sulfonylurea receptor 1 genetic
variability on non-insulin-dependent diabetes mellitus prevalence
and treatment: A population study. Am J Med Genet. 101:4–8. 2001.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Zychma MJ, Gumprecht J, Strojek K,
Grzeszczak W, Moczulski D, Trautsolt W and Karasek D: Sulfonylurea
receptor gene 16-3 polymorphism - association with sulfonylurea or
insulin treatment in type 2 diabetic subjects. Med Sci Monit.
8:CR512–CR515. 2002.PubMed/NCBI
|
51
|
Dawed AY, Donnelly L, Tavendale R, Carr F,
Leese G, Palmer CN, Pearson ER and Zhou K: CYP2C8 and SLCO1B1
variants and therapeutic response to thiazolidinediones in patients
with type 2 diabetes. Diabetes Care. 39:1902–1908. 2016. View Article : Google Scholar : PubMed/NCBI
|