1
|
Wolfe RA, Ashby VB, Milford EL, Ojo AO,
Ettenger RE, Agodoa LY, Held PJ and Port FK: Comparison of
mortality in all patients on dialysis, patients on dialysis
awaiting transplantation, and recipients of a first cadaveric
transplant. N Engl J Med. 341:1725–1730. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hricik DE: Transplant immunology and
immunosuppression: Core curriculum 2015. Am J Kidney Dis.
65:956–966. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Michalek RD, Gerriets VA, Jacobs SR,
Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG and
Rathmell JC: Cutting edge: Distinct glycolytic and lipid oxidative
metabolic programs are essential for effector and regulatory
CD4+ T cell subsets. J Immunol. 186:3299–3303. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang R, Dillon CP, Shi LZ, Milasta S,
Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger
J, et al: The transcription factor Myc controls metabolic
reprogramming upon T lymphocyte activation. Immunity. 35:871–882.
2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Caro-Maldonado A, Gerriets VA and Rathmell
JC: Matched and mismatched metabolic fuels in lymphocyte function.
Semin Immunol. 24:405–413. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Roos D and Loos JA: Changes in the
carbohydrate metabolism of mitogenically stimulated human
peripheral lymphocytes. II. Relative importance of glycolysis and
oxidative phosphorylation on phytohaemagglutinin stimulation. Exp
Cell Res. 77:127–135. 1973. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chang CH, Curtis JD, Maggi LB Jr, Faubert
B, Villarino AV, OSullivan D, Huang SC, van der Windt GJ, Blagih J,
Qiu J, et al: Posttranscriptional control of T cell effector
function by aerobic glycolysis. Cell. 153:1239–1251. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sena LA, Li S, Jairaman A, Prakriya M,
Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman
H, et al: Mitochondria are required for antigen-specific T cell
activation through reactive oxygen species signaling. Immunity.
38:225–236. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yin Y, Choi SC, Xu Z, Zeumer L, Kanda N,
Croker BP and Morel L: Glucose oxidation is critical for
CD4+ T cell activation in a mouse model of systemic
lupus erythematosus. J Immunol. 196:80–90. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bental M and Deutsch C: Metabolic changes
in activated T cells: An NMR study of human peripheral blood
lymphocytes. Magn Reson Med. 29:317–326. 1993. View Article : Google Scholar : PubMed/NCBI
|
11
|
Matés JM, Segura JA, Martín-Rufián M,
Campos-Sandoval JA, Alonso FJ and Márquez J: Glutaminase isoenzymes
as key regulators in metabolic and oxidative stress against cancer.
Curr Mol Med. 13:514–534. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Garcia-Manteiga JM, Mari S, Godejohann M,
Spraul M, Napoli C, Cenci S, Musco G and Sitia R: Metabolomics of B
to plasma cell differentiation. J Proteome Res. 10:4165–4176. 2011.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Dufort FJ, Gumina MR, Ta NL, Tao Y, Heyse
SA, Scott DA, Richardson AD, Seyfried TN and Chiles TC:
Glucose-dependent de novo lipogenesis in B lymphocytes: A
requirement for atp-citrate lyase in lipopolysaccharide-induced
differentiation. J Biol Chem. 289:7011–7024. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Caro-Maldonado A, Wang R, Nichols AG,
Kuraoka M, Milasta S, Sun LD, Gavin AL, Abel ED, Kelsoe G, Green
DR, et al: Metabolic reprogramming is required for antibody
production that is suppressed in anergic but exaggerated in
chronically BAFF-exposed B cells. J Immunol. 192:3626–3636. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Le A, Lane AN, Hamaker M, Bose S, Gouw A,
Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, et al:
Glucose-independent glutamine metabolism via TCA cycling for
proliferation and survival in B cells. Cell Metab. 15:110–121.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shaffer AL, Shapiro-Shelef M, Iwakoshi NN,
Lee AH, Qian SB, Zhao H, Yu X, Yang L, Tan BK, Rosenwald A, et al:
XBP1, downstream of Blimp-1, expands the secretory apparatus and
other organelles, and increases protein synthesis in plasma cell
differentiation. Immunity. 21:81–93. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lam WY, Becker AM, Kennerly KM, Wong R,
Curtis JD, Llufrio EM, McCommis KS, Fahrmann J, Pizzato HA, Nunley
RM, et al: Mitochondrial pyruvate import promotes long-term
survival of antibody-secreting plasma cells. Immunity. 45:60–73.
2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Crawford J and Cohen HJ: The essential
role of L-glutamine in lymphocyte differentiation in vitro. J Cell
Physiol. 124:275–282. 1985. View Article : Google Scholar : PubMed/NCBI
|
19
|
Stacpoole PW: The pharmacology of
dichloroacetate. Metabolism. 38:1124–1144. 1989. View Article : Google Scholar : PubMed/NCBI
|
20
|
Eleftheriadis T, Sounidaki M, Pissas G,
Antoniadi G, Liakopoulos V and Stefanidis I: In human alloreactive
CD4+ T-cells, dichloroacetate inhibits aerobic glycolysis, induces
apoptosis and favors differentiation towards the regulatory T-cell
subset instead of effector T-cell subsets. Mol Med Rep.
13:3370–3376. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee K, Ban HS, Naik R, Hong YS, Son S, Kim
BK, Xia Y, Song KB, Lee HS and Won M: Identification of malate
dehydrogenase 2 as a target protein of the HIF-1 inhibitor LW6
using chemical probes. Angew Chem Int Ed Engl. 52:10286–10289.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Eleftheriadis T, Pissas G, Antoniadi G,
Liakopoulos V and Stefanidis I: Malate dehydrogenase-2 inhibitor
LW6 promotes metabolic adaptations and reduces proliferation and
apoptosis in activated human T-cells. Exp Ther Med. 10:1959–1966.
2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Friedman B, Goodman EH Jr, Saunders HL,
Kostos V and Weinhouse S: Estimation of pyruvate recycling during
gluconeogenesis in perfused rat liver. Metabolism. 20:2–12. 1971.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Rümke HC, Terpstra FG, Huis B, Out TA and
Zeijlemaker WP: Immunoglobulin production in human mixed lymphocyte
cultures: Implications for co-cultures of cells from patients and
healthy donors. J Immunol. 128:696–701. 1982.PubMed/NCBI
|
25
|
Konishi E, Kitai Y and Kondo T:
Utilization of complement-dependent cytotoxicity to measure low
levels of antibodies: Application to nonstructural protein 1 in a
model of Japanese encephalitis virus. Clin Vaccine Immunol.
15:88–94. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Eleftheriadis T, Pissas G, Sounidaki M,
Antoniadi G, Antoniadis N, Liakopoulos V and Stefanidis I: In human
cell cultures, everolimus is inferior to tacrolimus in inhibiting
cellular alloimmunity, but equally effective as regards humoral
alloimmunity. Int Urol Nephrol. May 15–2017.(Epub ahead of print).
View Article : Google Scholar
|
27
|
Sato T, Deiwick A, Raddatz G, Koyama K and
Schlitt HJ: Interactions of allogeneic human mononuclear cells in
the two-way mixed leucocyte culture (MLC): Influence of cell
numbers, subpopulations and cyclosporin. Clin Exp Immunol.
115:301–308. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ostroukhova M, Goplen N, Karim MZ,
Michalec L, Guo L, Liang Q and Alam R: The role of low-level
lactate production in airway inflammation in asthma. Am J Physiol
Lung Cell Mol Physiol. 302:L300–L307. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cai P, Boor PJ, Khan MF, Kaphalia BS,
Ansari GA and Konig R: Immuno- and hepato-toxicity of
dichloroacetic acid in MRL+/+ and
B6C3F1 mice. J Immunotoxicol.
4:107–115. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bian L, Josefsson E, Jonsson IM, Verdrengh
M, Ohlsson C, Bokarewa M, Tarkowski A and Magnusson M:
Dichloroacetate alleviates development of collagen II-induced
arthritis in female DBA/1 mice. Arthritis Res Ther. 11:R1322009.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Ohashi T, Akazawa T, Aoki M, Kuze B,
Mizuta K, Ito Y and Inoue N: Dichloroacetate improves immune
dysfunction caused by tumor-secreted lactic acid and increases
antitumor immunoreactivity. Int J Cancer. 133:1107–1118. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Lelis FJN, Jaufmann J, Singh A, Fromm K,
Teschner AC, Pöschel S, Schäfer I, Beer-Hammer S, Rieber N and
Hartl D: Myeloid-derived suppressor cells modulate B-cell
responses. Immunol Lett. 188:108–115. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Simioni PU, Fernandes LG and Tamashiro WM:
Downregulation of L-arginine metabolism in dendritic cells induces
tolerance to exogenous antigen. Int J Immunopathol Pharmacol.
30:44–57. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bromage E, Stephens R and Hassoun L: The
third dimension of ELISPOTs: Quantifying antibody secretion from
individual plasma cells. J Immunol Methods. 346:75–79. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Aoyagi Y, Tasaki I, Okumura J and
Muramatsu T: Energy cost of whole-body protein synthesis measured
in vivo in chicks. Comp Biochem Physiol A Comp Physiol.
91:765–768. 1988. View Article : Google Scholar : PubMed/NCBI
|