1
|
Stewart SL: Ovarian cancer incidence:
Current and comprehensive statisticsOvarian cancer-clinical and
therapeutic perspectives. Farghaly S: In Tech. Rijeka, Croatia: pp.
1–15. 2012
|
2
|
Kurman RJ and Shih IeM: Pathogenesis of
ovarian cancer: Lessons from morphology and molecular biology and
their clinical implications. Int J Gynecol Pathol. 27:151–160.
2008.PubMed/NCBI
|
3
|
Mackenzie R, Talhouk A, Eshragh S, Lau S,
Cheung D, Chow C, Le N, Cook LS, Wilkinson N, McDermott J, et al:
Morphologic and molecular characteristics of mixed epithelial
ovarian cancers. Am J Surg Pathol. 39:1548–1557. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Thompson N, Adams DJ and Ranzani M:
Synthetic lethality: Emerging targets and opportunities in
melanoma. Pigment Cell Melanoma Res. 30:183–193. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li M, Li H, Liu F, Bi R, Tu X, Chen L, Ye
S and Cheng X: Characterization of ovarian clear cell carcinoma
using target drug-based molecular biomarkers: Implications for
personalized cancer therapy. J Ovarian Res. 10:92017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ledermann J, Harter P, Gourley C,
Friedlander M, Vergote I, Rustin G, Scott CL, Meier W,
Shapira-Frommer R, Safra T, et al: Olaparib maintenance therapy in
patients with platinum-sensitive relapsed serous ovarian cancer: A
preplanned retrospective analysis of outcomes by BRCA status in a
randomised phase 2 trial. Lancet Oncol. 15:852–861. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Mackay HJ, Brady MF, Oza AM, Reuss A,
Pujade-Lauraine E, Swart AM, Siddiqui N, Colombo N, Bookman MA,
Pfisterer J, et al: Gynecologic cancer intergroup: Prognostic
relevance of uncommon ovarian histology in women with stage III/IV
epithelial ovarian cancer. Int J Gynecol Cancer. 20:945–952. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sugiyama T, Kamura T, Kigawa J, Terakawa
N, Kikuchi Y, Kita T, Suzuki M, Sato I and Taguchi K: Clinical
characteristics of clear cell carcinoma of the ovary: A distinct
histologic type with poor prognosis and resistance to
platinum-based chemotherapy. Cancer. 88:2584–2589. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Leary A, Auguste A and Mesnage S: DNA
damage response as a therapeutic target in gynecological cancers.
Curr Opin Oncol. 28:404–411. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Murai J: Targeting DNA repair and
replication stress in the treatment of ovarian cancer. Int J Clin
Oncol. 22:619–628. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
O'Sullivan Coyne G, Chen AP, Meehan R and
Doroshow JH: PARP inhibitors in reproductive system cancers:
Current use and developments. Drugs. 77:113–130. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ang YLE and Tan DSP: Development of PARP
inhibitors in gynecological malignancies. Curr Probl Cancer.
41:273–286. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rajawat J, Shukla N and Mishra DP:
Therapeutic targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in
cancer: Current developments, therapeutic strategies, and future
opportunities. Med Res Rev. May 16–2017.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wilkerson PM, Dedes KJ, Samartzis EP,
Dedes I, Lambros MB, Natrajan R, Gauthier A, Piscuoglio S, Töpfer
C, Vukovic V, et al: Preclinical evaluation of the PARP inhibitor
BMN-673 for the treatment of ovarian clear cell cancer. Oncotarget.
8:6057–6066. 2017.PubMed/NCBI
|
15
|
Steffensen KD, Adimi P and Jakobsen A:
Veliparib monotherapy to patients with BRCA germ line mutation and
platinum-resistant or partially platinum-sensitive relapse of
epithelial ovarian cancer: A Phase I/II study. Int J Gynecol
Cancer. Aug 1–2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
16
|
Pennington KP, Walsh T, Harrell MI, Lee
MK, Pennil CC, Rendi MH, Thornton A, Norquist BM, Casadei S, Nord
AS, et al: Germline and somatic mutations in homologous
recombination genes predict platinum response and survival in
ovarian, fallopian tube and peritoneal carcinomas. Clin Cancer Res.
20:764–775. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dougherty BA, Lai Z, Hodgson DR, Orr MCM,
Hawryluk M, Sun J, Yelensky R, Spencer SK, Robertson JD, Ho TW, et
al: Biological and clinical evidence for somatic mutations in BRCA1
and BRCA2 as predictive markers for olaparib response in high-grade
serous ovarian cancers in the maintenance setting. Oncotarget.
8:43653–43661. 2017.PubMed/NCBI
|
18
|
Kobayashi H, Sugimoto H, Onishi S and
Nakano K: Novel biomarker candidates for the diagnosis of ovarian
clear cell carcinoma. Oncol Lett. 10:612–618. 2015.PubMed/NCBI
|
19
|
Kajihara H, Yamada Y, Kanayama S, Furukawa
N, Noguchi T, Haruta S, Yoshida S, Sado T, Oi H and Kobayashi H:
Clear cell carcinoma of the ovary: Potential pathogenic mechanisms
(Review). Oncol Rep. 23:1193–1203. 2010.PubMed/NCBI
|
20
|
Kobayashi H, Kajiwara H, Kanayama S,
Yamada Y, Furukawa N, Noguchi T, Haruta S, Yoshida S, Sakata M,
Sado T, et al: Molecular pathogenesis of endometriosis-associated
clear cell carcinoma of the ovary (review). Oncol Rep. 22:233–240.
2009.PubMed/NCBI
|
21
|
Maru Y, Tanaka N, Ohira M, Itami M, Hippo
Y and Nagase H: Identification of novel mutations in Japanese
ovarian clear cell carcinoma patients using optimized targeted NGS
for clinical diagnosis. Gynecol Oncol. 144:377–383. 2017.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Bajrami I, Frankum JR, Konde A, Miller RE,
Rehman FL, Brough R, Campbell J, Sims D, Rafiq R, Hooper S, et al:
Genome-wide profiling of genetic synthetic lethality identifies
CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity.
Cancer Res. 74:287–297. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wittig-Blaich S, Wittig R, Schmidt S, Lyer
S, Bewerunge-Hudler M, Gronert-Sum S, Strobel-Freidekind O, Müller
C, List M, Jaskot A, et al: Systematic screening of isogenic cancer
cells identifies DUSP6 as context-specific synthetic lethal target
in melanoma. Oncotarget. 8:23760–23774. 2017.PubMed/NCBI
|
24
|
Spreafico A, Oza AM, Clarke BA, Mackay HJ,
Shaw P, Butler M, Dhani NC, Lheureux S, Wilson MK, Welch S, et al:
Genotype-matched treatment for patients with advanced type I
epithelial ovarian cancer (EOC). Gynecol Oncol. 144:250–255. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Huang HN, Lin MC, Huang WC, Chiang YC and
Kuo KT: Loss of ARID1A expression and its relationship with
PI3K-Akt pathway alterations and ZNF217 amplification in ovarian
clear cell carcinoma. Mod Pathol. 27:983–990. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Arildsen NS, Jönsson JM, Bartuma K,
Ebbesson A, Westbom-Fremer S, Måsbäck A, Malander S, Nilbert M and
Hedenfalk IA: Involvement of chromatin remodeling genes and the Rho
GTPases RhoB and CDC42 in ovarian clear cell carcinoma. Front
Oncol. 7:1092017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Er TK, Su YF, Wu CC, Chen CC, Wang J,
Hsieh TH, Herreros-Villanueva M, Chen WT, Chen YT, Liu TC, et al:
Targeted next-generation sequencing for molecular diagnosis of
endometriosis-associated ovarian cancer. J Mol Med (Berl).
94:835–847. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Worley MJ Jr, Liu S, Hua Y, Kwok JS,
Samuel A, Hou L, Shoni M, Lu S, Sandberg EM, Keryan A, et al:
Molecular changes in endometriosis-associated ovarian clear cell
carcinoma. Eur J Cancer. 51:1831–1842. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sanjiv K, Hagenkort A, Calderón-Montaño
JM, Koolmeister T, Reaper PM, Mortusewicz O, Jacques SA, Kuiper RV,
Schultz N, Scobie M, et al: Cancer-specific synthetic lethality
between ATR and CHK1 kinase activities. Cell Reports. 17:3407–3416.
2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Maeda D, Mao TL, Fukayama M, Nakagawa S,
Yano T, Taketani Y and Shih IeM: Clinicopathological significance
of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma.
Int J Mol Sci. 11:5120–5128. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wiegand KC, Shah SP, Al-Agha OM, Zhao Y,
Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS and Kalloger SE:
ARID1A mutations in endometriosis-associated ovarian carcinomas. N
Engl J Med. 363:1532–1543. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Williamson CT, Miller R, Pemberton HN,
Jones SE, Campbell J, Konde A, Badham N, Rafiq R, Brough R, Gulati
A, et al: ATR inhibitors as a synthetic lethal therapy for tumours
deficient in ARID1A. Nat Commun. 7:138372016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bennett JA, Morales-Oyarvide V, Campbell
S, Longacre TA and Oliva E: Mismatch repair protein expression in
clear cell carcinoma of the ovary: Incidence and morphologic
associations in 109 cases. Am J Surg Pathol. 40:656–663. 2016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
McCormick A, Earp E, Leeson C, Dixon M,
O'Donnell R, Kaufmann A and Edmondson RJ: Phosphatase and tensin
homolog is a potential target for ovarian cancer sensitization to
cytotoxic agents. Int J Gynecol Cancer. 26:632–639. 2016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Mizuno T, Suzuki N, Makino H, Furui T,
Morii E, Aoki H, Kunisada T, Yano M, Kuji S, Hirashima Y, et al:
Cancer stem-like cells of ovarian clear cell carcinoma are enriched
in the ALDH-high population associated with an accelerated
scavenging system in reactive oxygen species. Gynecol Oncol.
137:299–305. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Heinzelmann-Schwarz VA, Gardiner-Garden M,
Henshall SM, Scurry J, Scolyer RA, Davies MJ, Heinzelmann M, Kalish
LH, Bali A, Kench JG, et al: Overexpression of the cell adhesion
molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian
epithelium and ovarian cancer. Clin Cancer Res. 10:4427–4436. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Sundar R, Brown J, Ingles Russo A and Yap
TA: Targeting ATR in cancer medicine. Curr Probl Cancer.
41:302–315. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Furgason JM and Bahassi el M: Targeting
DNA repair mechanisms in cancer. Pharmacol Ther. 137:298–308. 2013.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Z, Pearlman AH and Hsieh P: DNA
mismatch repair and the DNA damage response. DNA Repair (Amst).
38:94–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li L, Ryser S, Dizin E, Pils D, Krainer M,
Jefford CE, Bertoni F, Zeillinger R and Irminger-Finger I:
Oncogenic BARD1 isoforms expressed in gynecological cancers. Cancer
Res. 67:11876–11885. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Vilar E, Bartnik CM, Stenzel SL, Raskin L,
Ahn J, Moreno V, Mukherjee B, Iniesta MD, Morgan MA, Rennert G, et
al: MRE11 deficiency increases sensitivity to poly(ADP-ribose)
polymerase inhibition in microsatellite unstable colorectal
cancers. Cancer Res. 71:2632–2642. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Elvin JA, Chura J, Gay LM and Markman M:
Comprehensive genomic profiling (CGP) of ovarian clear cell
carcinomas (OCCC) identifies clinically relevant genomic
alterations (CRGA) and targeted therapy options. Gynecol Oncol Rep.
20:62–66. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kalimutho M, Bain AL, Mukherjee B, Nag P,
Nanayakkara DM, Harten SK, Harris JL, Subramanian GN, Sinha D,
Shirasawa S, et al: Enhanced dependency of KRAS-mutant colorectal
cancer cells on RAD51-dependent homologous recombination repair
identified from genetic interactions in Saccharomyces cerevisiae.
Mol Oncol. 11:470–490. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ye H, Zhang X, Chen Y, Liu Q and Wei J:
Ranking novel cancer driving synthetic lethal gene pairs using TCGA
data. Oncotarget. 7:55352–55367. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kuo KT, Mao TL, Chen X, Feng Y, Nakayama
K, Wang Y, Glas R, Ma MJ, Kurman RJ, Shih IeM, et al: DNA copy
numbers profiles in affinity-purified ovarian clear cell carcinoma.
Clin Cancer Res. 16:1997–2008. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Nowsheen S, Cooper T, Stanley JA and Yang
ES: Synthetic lethal interactions between EGFR and PARP inhibition
in human triple negative breast cancer cells. PLoS One.
7:e466142012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ayhan A, Kuhn E, Wu RC, Ogawa H,
Bahadirli-Talbott A, Mao TL, Sugimura H, Shih IM and Wang TL: CCNE1
copy-number gain and overexpression identify ovarian clear cell
carcinoma with a poor prognosis. Mod Pathol. 30:297–303. 2017.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Reid RJ, Du X, Sunjevaric I, Rayannavar V,
Dittmar J, Bryant E, Maurer M and Rothstein R: A synthetic dosage
lethal genetic interaction between CKS1B and PLK1 is conserved in
yeast and human cancer cells. Genetics. 204:807–819. 2016.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Shigetomi H, Sudo T, Shimada K, Uekuri C,
Tsuji Y, Kanayama S, Naruse K, Yamada Y, Konishi N and Kobayashi H:
Inhibition of cell death and induction of G2 arrest accumulation in
human ovarian clear cells by HNF-1β transcription factor:
Chemosensitivity is regulated by checkpoint kinase CHK1. Int J
Gynecol Cancer. 24:838–843. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Weterings E, Gallegos AC, Dominick LN,
Cooke LS, Bartels TN, Vagner J, Matsunaga TO and Mahadevan D: A
novel small molecule inhibitor of the DNA repair protein Ku70/80.
DNA Repair (Amst). 43:98–106. 2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Takahashi Y, Sheridan P, Niida A, Sawada
G, Uchi R, Mizuno H, Kurashige J, Sugimachi K, Sasaki S, Shimada Y,
et al: The AURKA/TPX2 axis drives colon tumorigenesis cooperatively
with MYC. Ann Oncol. 26:935–942. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Maifrede S, Martin K,
Podszywalow-Bartnicka P, Sullivan K, Langer SK, Nejadi R, Dasgupta
Y, Hulse M, Gritsyuk D, Nieborowska-Skorska M, et al: IGH/MYC
translocation associates with BRCA2 deficiency and synthetic
lethality to PARP1 inhibitors. Mol Cancer Res. 15:1–972. 2017.
View Article : Google Scholar
|
53
|
Etemadmoghadam D, Weir BA, Au-Yeung G,
Alsop K, Mitchell G, George J, Davis S, D'Andrea AD, Simpson K,
Hahn WC, et al: Australian ovarian cancer study group: Synthetic
lethality between CCNE1 amplification and loss of BRCA1. Proc Natl
Acad Sci USA. 110:19489–19494. 2013. View Article : Google Scholar : PubMed/NCBI
|
54
|
Zhan Q, Wang C and Ngai S: Ovarian cancer
stem cells: A new target for cancer therapy. BioMed Res Int.
2013:9168192013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Chen CL, Yan X, Gao YN and Liao QP:
Expression of DNA methyltransferase 1, 3A and 3B mRNA in the
epithelial ovarian carcinoma. Zhonghua Fu Chan Ke Za Zhi.
40:770–774. 2005.(In Chinese). PubMed/NCBI
|
56
|
Itamochi H, Oumi N, Oishi T, Taniguchi F,
Shoji T, Fujiwara H, Sugiyama T, Suzuki M, Kigawa J and Harada T:
Fibroblast growth factor receptor 2 is associated with poor overall
survival in clear cell carcinoma of the ovary and may be a novel
therapeutic approach. Int J Gynecol Cancer. 25:570–576. 2015.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Chen CH, Shen J, Lee WJ and Chow SN:
Overexpression of cyclin D1 and c-Myc gene products in human
primary epithelial ovarian cancer. Int J Gynecol Cancer.
15:878–883. 2005. View Article : Google Scholar : PubMed/NCBI
|
58
|
Dong Y, Li A, Wang J, Weber JD and Michel
LS: Synthetic lethality through combined notch-epidermal growth
factor receptor pathway inhibition in basal-like breast cancer.
Cancer Res. 70:5465–5474. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Kobayashi H, Shigetomi H and Yoshimoto C:
Checkpoint kinase 1 inhibitors as targeted molecular agents for
clear cell carcinoma of the ovary. Oncol Lett. 10:571–576.
2015.PubMed/NCBI
|
60
|
Gadhikar MA, Sciuto MR, Alves MV,
Pickering CR, Osman AA, Neskey DM, Zhao M, Fitzgerald AL, Myers JN
and Frederick MJ: Chk1/2 inhibition overcomes the cisplatin
resistance of head and neck cancer cells secondary to the loss of
functional p53. Mol Cancer Ther. 12:1860–1873. 2013. View Article : Google Scholar : PubMed/NCBI
|
61
|
Carrassa L, Chilà R, Lupi M, Ricci F,
Celenza C, Mazzoletti M, Broggini M and Damia G: Combined
inhibition of Chk1 and Wee1: In vitro synergistic effect translates
to tumor growth inhibition in vivo. Cell Cycle. 11:2507–2517. 2012.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Origanti S, Cai SR, Munir AZ, White LS and
Piwnica-Worms H: Synthetic lethality of Chk1 inhibition combined
with p53 and/or p21 loss during a DNA damage response in normal and
tumor cells. Oncogene. 32:577–588. 2013. View Article : Google Scholar : PubMed/NCBI
|
63
|
Orta ML, Höglund A, Calderón-Montaño JM,
Domínguez I, Burgos-Morón E, Visnes T, Pastor N, Ström C,
López-lázaro M and Helleday T: The PARP inhibitor olaparib disrupts
base excision repair of 5-aza-2′-deoxycytidine lesions. Nucleic
Acids Res. 42:9108–9120. 2014. View Article : Google Scholar : PubMed/NCBI
|
64
|
Vyse S, Howitt A and Huang PH: Exploiting
synthetic lethality and network biology to overcome EGFR inhibitor
resistance in lung cancer. J Mol Biol. 429:1767–1786. 2017.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Galic V, Shawber CJ, Reeves C, Shah M,
Murtomaki A, Wright J, Herzog T, Tong GX and Kitajewski J: NOTCH2
expression is decreased in epithelial ovarian cancer and is related
to the tumor histological subtype. Pathol Discov. 1:42013.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Wiegmans AP, Yap PY, Ward A, Lim YC and
Khanna KK: Differences in expression of key DNA damage repair genes
after epigenetic-induced BRCaness dictate synthetic lethality with
PARP1 inhibition. Mol Cancer Ther. 14:2321–2331. 2015. View Article : Google Scholar : PubMed/NCBI
|
67
|
Gao Y, Rankin GO, Tu Y and Chen YC:
Theaflavin-3, 3′-digallate decreases human ovarian carcinoma
OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways, not
via MAPK pathways. Int J Oncol. 48:281–292. 2016. View Article : Google Scholar : PubMed/NCBI
|
68
|
Metzger MJ, Stoddard BL and Monnat RJ Jr:
PARP-mediated repair, homologous recombination, and back-up
non-homologous end joining-like repair of single-strand nicks. DNA
Repair (Amst). 12:529–534. 2013. View Article : Google Scholar : PubMed/NCBI
|