1
|
Kalia LV and Lang AE: Parkinson's disease.
Lancet. 386:896–912. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dorsey ER, Constantinescu R, Thompson JP,
Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM,
Schifitto G, Siderowf A, et al: Projected number of people with
Parkinson disease in the most populous nations, 2005 through 2030.
Neurology. 68:384–386. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lane EL, Handley OJ, Rosser AE and Dunnett
SB: Potential cellular and regenerative approaches for the
treatment of Parkinson's disease. Neuropsychiatr Dis Treat.
4:835–845. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Riecke J, Johns KM, Cai C, Vahidy FS,
Parsha K, Furr-Stimming E, Schiess M and Savitz SI: A Meta-Analysis
of Mesenchymal Stem Cells in Animal Models of Parkinson's Disease.
Stem Cells Dev. 24:2082–2090. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rath A, Klein A, Papazoglou A, Pruszak J,
Garcia J, Krause M, Maciaczyk J, Dunnett SB and Nikkhah G: Survival
and functional restoration of human fetal ventral mesencephalon
following transplantation in a rat model of Parkinson's disease.
Cell Transplant. 22:1281–1293. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Freed CR, Greene PE, Breeze RE, Tsai WY,
DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ,
et al: Transplantation of embryonic dopamine neurons for severe
Parkinson's disease. N Engl J Med. 344:710–719. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brederlau A, Correia AS, Anisimov SV, Elmi
M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U,
et al: Transplantation of human embryonic stem cell-derived cells
to a rat model of Parkinson's disease: Effect of in vitro
differentiation on graft survival and teratoma formation. Stem
Cells. 24:1433–1440. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ambasudhan R, Dolatabadi N, Nutter A,
Masliah E, Mckercher SR and Lipton SA: Potential for cell therapy
in Parkinson's disease using genetically programmed human embryonic
stem cell-derived neural progenitor cells. J Comp Neurol.
522:2845–2856. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Grealish S, Diguet E, Kirkeby A, Mattsson
B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL, Hantraye P,
Björklund A, et al: Human ESC-derived dopamine neurons show similar
preclinical efficacy and potency to fetal neurons when grafted in a
rat model of Parkinson's disease. Cell Stem Cell. 15:653–665. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y, Chen J, Wang L, Zhang L, Lu M and
Chopp M: Intracerebral transplantation of bone marrow stromal cells
in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of
Parkinson's disease. Neurosci Lett. 316:67–70. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Camp DM, Loeffler DA, Farrah DM, Borneman
JN and LeWitt PA: Cellular immune response to intrastriatally
implanted allogeneic bone marrow stromal cells in a rat model of
Parkinson's disease. J Neuroinflammation. 6:172009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Inden M, Takata K, Nishimura K, Kitamura
Y, Ashihara E, Yoshimoto K, Ariga H, Honmou O and Shimohama S:
Therapeutic effects of human mesenchymal and hematopoietic stem
cells on rotenone-treated parkinsonian mice. J Neurosci Res.
91:62–72. 2013.PubMed/NCBI
|
13
|
Carlsson T, Carta M, Winkler C, Björklund
A and Kirik D: Serotonin neuron transplants exacerbate
L-DOPA-induced dyskinesias in a rat model of Parkinson's disease. J
Neurosci. 27:8011–8022. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Politis M, Wu K, Loane C, Quinn NP, Brooks
DJ, Rehncrona S, Bjorklund A, Lindvall O and Piccini P:
Serotonergic neurons mediate dyskinesia side effects in Parkinson's
patients with neural transplants. Sci Transl Med. 2:38ra462010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Olanow CW, Goetz CG, Kordower JH, Stoessl
AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, et
al: A double-blind controlled trial of bilateral fetal nigral
transplantation in Parkinson's disease. Ann Neurol. 54:403–414.
2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sundberg M, Bogetofte H, Lawson T, Jansson
J, Smith G, Astradsson A, Moore M, Osborn T, Cooper O, Spealman R,
et al: Improved cell therapy protocols for Parkinson's disease
based on differentiation efficiency and safety of hESC-, hiPSC-,
and non-human primate iPSC-derived dopaminergic neurons. Stem
Cells. 31:1548–1562. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Swistowski A, Peng J, Liu Q, Mali P, Rao
MS, Cheng L and Zeng X: Efficient generation of functional
dopaminergic neurons from human induced pluripotent stem cells
under defined conditions. Stem Cells. 28:1893–1904. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Mitchell M, Muftakhidinov B, Winchen T, et
al: Engauge Digitizer Software. http://markummitchell.github.io/engauge-digitizerMay
11–2017
|
19
|
Schmidt A, Wellmann J, Schilling M,
Strecker JK, Sommer C, Schäbitz WR, Diederich K and Minnerup J:
Meta-analysis of the efficacy of different training strategies in
animal models of ischemic stroke. Stroke. 45:239–247. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wernig M, Zhao JP, Pruszak J, Hedlund E,
Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O and
Jaenisch R: Neurons derived from reprogrammed fibroblasts
functionally integrate into the fetal brain and improve symptoms of
rats with Parkinson's disease. Proc Natl Acad Sci USA. 105:pp.
5856–5861. 2008; View Article : Google Scholar : PubMed/NCBI
|
21
|
Deleidi M, Hargus G, Hallett P, Osborn T
and Isacson O: Development of histocompatible primate-induced
pluripotent stem cells for neural transplantation. Stem Cells.
29:1052–1063. 2011. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Rhee YH, Ko JY, Chang MY, Yi SH, Kim D,
Kim CH, Shim JW, Jo AY, Kim BW, Lee H, et al: Protein-based human
iPS cells efficiently generate functional dopamine neurons and can
treat a rat model of Parkinson disease. J Clin Invest.
121:2326–2335. 2011. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Doi D, Samata B, Katsukawa M, Kikuchi T,
Morizane A, Ono Y, Sekiguchi K, Nakagawa M, Parmar M and Takahashi
J: Isolation of human induced pluripotent stem cell-derived
dopaminergic progenitors by cell sorting for successful
transplantation. Stem Cell Reports. 2:337–350. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Han F, Wang W, Chen B, Chen C, Li S, Lu X,
Duan J, Zhang Y, Zhang YA, Guo W, et al: Human induced pluripotent
stem cell-derived neurons improve motor asymmetry in a
6-hydroxydopamine-induced rat model of Parkinson's disease.
Cytotherapy. 17:665–679. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Samata B, Doi D, Nishimura K, Kikuchi T,
Watanabe A, Sakamoto Y, Kakuta J, Ono Y and Takahashi J:
Purification of functional human ES and iPSC-derived midbrain
dopaminergic progenitors using LRTM1. Nat Commun. 7:130972016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kirik D, Rosenblad C and Björklund A:
Characterization of behavioral and neurodegenerative changes
following partial lesions of the nigrostriatal dopamine system
induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol.
152:259–277. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cadet JL, Zhu SM and Shu Ming Zhu: The
intrastriatal 6-hydroxydopamine model of hemiparkinsonism:
Quantitative receptor autoradiographic evidence of correlation
between circling behavior and presynaptic as well as postsynaptic
nigrostriatal markers in the rat. Brain Res. 595:316–326. 1992.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Emborg ME: Evaluation of animal models of
Parkinson's disease for neuroprotective strategies. J Neurosci
Methods. 139:121–143. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Brundin P, Strecker RE, Lindvall O,
Isacson O, Nilsson OG, Barbin G, Prochiantz A, Forni C, Nieoullon
A, Widner H, et al: Intracerebral grafting of dopamine neurons.
Experimental basis for clinical trials in patients with Parkinson's
disease. Ann N Y Acad Sci. 495:473–496. 1987. View Article : Google Scholar : PubMed/NCBI
|
30
|
Brundin P, Barker RA and Parmar M: Neural
grafting in Parkinson's disease Problems and possibilities. Prog
Brain Res. 184:265–294. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jacobs BM: Stemming the hype: What can we
learn from iPSC models of Parkinson's disease and how can we learn
it? J Parkinsons Dis. 4:15–27. 2014.PubMed/NCBI
|
32
|
Xu X, Huang J, Li J, Liu L, Han C, Shen Y,
Zhang G, Jiang H, Lin Z, Xiong N, et al: Induced pluripotent stem
cells and Parkinson's disease: Modelling and treatment. Cell
Prolif. 49:14–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Valadas JS, Vos M and Verstreken P:
Therapeutic strategies in Parkinson's disease: What we have learned
from animal models. Ann N Y Acad Sci. 1338:16–37. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Blandini F, Armentero MT and Martignoni E:
The 6-hydroxydopamine model: News from the past. Parkinsonism Relat
Disord. 14 Suppl 2:S124–S129. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Seibler P, Graziotto J, Jeong H, Simunovic
F, Klein C and Krainc D: Mitochondrial Parkin recruitment is
impaired in neurons derived from mutant PINK1 induced pluripotent
stem cells. J Neurosci. 31:5970–5976. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li W, Chen S and Li JY: Human induced
pluripotent stem cells in Parkinson's disease: A novel cell source
of cell therapy and disease modeling. Prog Neurobiol. 134:161–177.
2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kjaergard LL, Villumsen J and Gluud C:
Reported methodologic quality and discrepancies between large and
small randomized trials in meta-analyses. Ann Intern Med.
135:982–989. 2001. View Article : Google Scholar : PubMed/NCBI
|