1
|
Gronthos S, Mankani M, Brahim J, Robey PG
and Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro
and in vivo. Proc Natl Acad Sci USA. 97:pp. 13625–13630. 2000;
View Article : Google Scholar : PubMed/NCBI
|
2
|
Stanislawski L, Carreau JP, Pouchelet M,
Chen ZH and Goldberg M: In vitro culture of human dental pulp
cells: Some aspects of cells emerging early from the explant. Clin
Oral Investig. 1:131–140. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Couble ML, Farges JC, Bleicher F,
Perrat-Mabillon B, Boudeulle M and Magloire H: Odontoblast
differentiation of human dental pulp cells in explant cultures.
Calcif Tissue Int. 66:129–138. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
He H, Yu J, Liu Y, Lu S, Liu H, Shi J and
Jin Y: Effects of FGF2 and TGFbeta1 on the differentiation of human
dental pulp stem cells in vitro. Cell Biol Int. 32:827–834. 2008.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Iohara K, Zheng L, Ito M, Tomokiyo A,
Matsushita K and Nakashima M: Side population cells isolated from
porcine dental pulp tissue with self-renewal and multipotency for
dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis.
Stem Cells. 24:2493–2503. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Iohara K, Zheng L, Wake H, Ito M, Nabekura
J, Wakita H, Nakamura H, Into T, Matsushita K and Nakashima M: A
novel stem cell source for vasculogenesis in ischemia: Subfraction
of side population cells from dental pulp. Stem Cells.
26:2408–2418. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Iohara K, Imabayashi K, Ishizaka R,
Watanabe A, Nabekura J, Ito M, Matsushita K, Nakamura H and
Nakashima M: Complete pulp regeneration after pulpectomy by
transplantation of CD105+ stem cells with stromal
cell-derived factor-1. Tissue Eng Part A. 17:1911–1920. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Min JH, Ko SY, Cho YB, Ryu CJ and Jang YJ:
Dentinogenic potential of human adult dental pulp cells during the
extended primary culture. Hum Cell. 24:43–50. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shi S, Bartold PM, Miura M, Seo BM, Robey
PG and Gronthos S: The efficacy of mesenchymal stem cells to
regenerate and repair dental structures. Orthod Craniofac Res.
8:191–199. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sloan AJ and Waddington RJ: Dental pulp
stem cells: What, where, how? Int J Paediatr Dent. 19:61–70. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Spath L, Rotilio V, Alessandrini M,
Gambara G, De Angelis L, Mancini M, Mitsiadis TA, Vivarelli E, Naro
F, Filippini A and Papaccio G: Explant-derived human dental pulp
stem cells enhance differentiation and proliferation potentials. J
Cell Mol Med. 14(6b): 1–1644. 2010.
|
12
|
Tran-Hung L, Mathieu S and About I: Role
of human pulp fibroblasts in angiogenesis. J Dent Res. 85:819–823.
2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yamada Y, Fujimoto A, Ito A, Yoshimi R and
Ueda M: Cluster analysis and gene expression profiles: A cDNA
microarray system-based comparison between human dental pulp stem
cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue
engineering cell therapy. Biomaterials. 27:3766–3781. 2006.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu H, Gronthos S and Shi S: Dental pulp
stem cells. Methods Enzymol. 419:99–113. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sakai K, Yamamoto A, Matsubara K, Nakamura
S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S,
et al: Human dental pulp-derived stem cells promote locomotor
recovery after complete transection of the rat spinal cord by
multiple neuro-regenerative mechanisms. J Clin Invest. 122:80–90.
2012.PubMed/NCBI
|
16
|
Nakamura S, Yamada Y, Katagiri W, Sugito
T, Ito K and Ueda M: Stem cell proliferation pathways comparison
between human exfoliated deciduous teeth and dental pulp stem cells
by gene expression profile from promising dental pulp. J Endod.
35:1536–1542. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gottipamula S, Muttigi MS, Kolkundkar U
and Seetharam RN: Serum-free media for the production of human
mesenchymal stromal cells: A review. Cell Prolif. 46:608–627. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Ishikawa I, Sawada R, Kato Y, Tsuji K,
Shao J, Yamada T, Kato R and Tsuchiya T: Effectivity of the novel
serum-free medium STK2 for proliferating human mesenchymal stem
cells. Yakugaku Zasshi. 129:381–384. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tsugeno Y, Sato F, Muragaki Y and Kato Y:
Cell culture of human gingival fibroblasts, oral cancer cells and
mesothelioma cells with serum-free media, STK1 and STK2. Biomed
Rep. 2:644–648. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fukuta M, Nakai Y, Kirino K, Nakagawa M,
Sekiguchi K, Nagata S, Matsumoto Y, Yamamoto T, Umeda K, Heike T,
et al: Derivation of mesenchymal stromal cells from pluripotent
stem cells through a neural crest lineage using small molecule
compounds with defined media. PLoS One. 9:e1122912014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Inoue H, Takahashi H, Hashimura M, Eshima
K, Akiya M, Matsumoto T and Saegusa M: Cooperation of Sox4 with
β-catenin/p300 complex in transcriptional regulation of the Slug
gene during divergent sarcomatous differentiation in uterine
carcinosarcoma. BMC Cancer. 16:532016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fujii S, Fujimoto K, Goto N, Kanawa M,
Kawamoto T, Pan H, Srivatanakul P, Rakdang W, Pornprasitwech J,
Saskianti T, et al: Characteristic expression of MSX1, MSX2, TBX2
and ENTPD1 in dental pulp cells. Biomed Rep. 3:566–572. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Edgar R, Domrachev M and Lash AE: Gene
Expression Omnibus: NCBI gene expression and hybridization array
data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sasamoto T, Fujimoto K, Kanawa M, Kimura
J, Takeuchi J, Harada N, Goto N, Kawamoto T, Noshiro M, Suardita K,
et al: DEC2 is a negative regulator for the proliferation and
differentiation of chondrocyte lineage-committed mesenchymal stem
cells. Int J Mol Med. 38:876–884. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Nakashima M, Iohara K and Sugiyama M:
Human dental pulp stem cells with highly angiogenic and neurogenic
potential for possible use in pulp regeneration. Cytokine Growth
Factor Rev. 20:435–440. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nakashima M, Iohara K, Murakami M,
Nakamura H, Sato Y, Ariji Y and Matsushita K: Pulp regeneration by
transplantation of dental pulp stem cells in pulpitis: A pilot
clinical study. Stem Cell Res Ther. 8:612017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Song M, Lee JH, Bae J, Bu Y and Kim EC:
Human dental pulp stem cells are more effective than human bone
marrow-derived mesenchymal stem cells in cerebral ischemic injury.
Cell Transplant. 26:1001–1016. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sawada R, Yamada T, Tsuchiya T and
Matsuoka A: Microarray analysis of the effects of serum-free medium
on gene expression changes in human mesenchymal stem cells during
the in vitro culture. Yakugaku Zasshi. 130:1387–1393. 2010.
View Article : Google Scholar : PubMed/NCBI
|