1
|
Barclay AN and Brown MH: The SIRP family
of receptors and immune regulation. Nat Rev Immunol. 6:457–464.
2006. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Barclay AN and van den Berg TK: The
interaction between signal regulatory protein alpha (SIRPα) and
CD47: Structure, function, and therapeutic target. Annu Rev
Immunol. 32:25–50. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kharitonenkov A, Chen Z, Sures I, Wang H,
Schilling J and Ullrich A: A family of proteins that inhibit
signalling through tyrosine kinase receptors. Nature. 386:181–186.
1997. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Sano S, Ohnishi H, Omori A, Hasegawa J and
Kubota M: BIT, an immune antigen receptor-like molecule in the
brain. FEBS Lett. 411:327–334. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
van Beek EM, Cochrane F, Barclay AN and
van den Berg TK: Signal regulatory proteins in the immune system. J
Immunol. 175:7781–7787. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu Y, Tong Q, Zhou Y, Lee HW, Yang JJ,
Bühring HJ, Chen YT, Ha B, Chen CX, Yang Y, et al: Functional
elements on SIRPalpha IgV domain mediate cell surface binding to
CD47. J Mol Biol. 365:680–693. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yamasaki Y, Ito S, Tsunoda N, Kokuryo T,
Hara K, Senga T, Kannagi R, Yamamoto T, Oda K, Nagino M, et al:
SIRPalpha1 and SIRPalpha2: Their role as tumor suppressors in
breast carcinoma cells. Biochem Biophys Res Commun. 361:7–13. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Maekawa T, Imoto A, Satoh T, Okazaki T and
Takahashi S: Induction of β-catenin by the suppression of signal
regulatory protein α1 in K562 cells. Int J Mol Med. 27:865–872.
2011.PubMed/NCBI
|
9
|
van Beek EM, de Vries TJ, Mulder L,
Schoenmaker T, Hoeben KA, Matozaki T, Langenbach GE, Kraal G,
Everts V and van den Berg TK: Inhibitory regulation of osteoclast
bone resorption by signal regulatory protein alpha. FASEB J.
23:4081–4090. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu SQ, Alkema PK, Tieché C, Tefft BJ, Liu
DZ, Li YC, Sumpio BE, Caprini JA and Paniagua M: Negative
regulation of monocyte adhesion to arterial elastic laminae by
signal regulatory protein alpha and Src homology 2
domain-containing protein-tyrosine phosphatase-1. J Biol Chem.
280:39294–39301. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Stofega MR, Argetsinger LS, Wang H,
Ullrich A and Carter-Su C: Negative regulation of growth hormone
receptor/JAK2 signaling by signal regulatory protein alpha. J Biol
Chem. 275:28222–28229. 2000.PubMed/NCBI
|
12
|
Takada T, Matozaki T, Takeda H, Fukunaga
K, Noguchi T, Fujioka Y, Okazaki I, Tsuda M, Yamao T, Ochi F, et
al: Roles of the complex formation of SHPS-1 with SHP-2 in
insulin-stimulated mitogen-activated protein kinase activation. J
Biol Chem. 273:9234–9242. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Murata Y, Kotani T, Ohnishi H and Matozaki
T: The CD47-SIRPα signalling system: Its physiological roles and
therapeutic application. J Biochem. 155:335–344. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Oshima K, Ruhul Amin AR, Suzuki A,
Hamaguchi M and Matsuda S: SHPS-1, a multifunctional transmembrane
glycoprotein. FEBS Lett. 519:1–7. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Okazawa H, Motegi S, Ohyama N, Ohnishi H,
Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O and Matozaki T:
Negative regulation of phagocytosis in macrophages by the
CD47-SHPS-1 system. J Immunol. 174:2004–2011. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jaiswal S, Jamieson CH, Pang WW, Park CY,
Chao MP, Majeti R, Traver D, van Rooijen N and Weissman IL: CD47 is
upregulated on circulating hematopoietic stem cells and leukemia
cells to avoid phagocytosis. Cell. 138:271–285. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
McCracken MN, Cha AC and Weissman IL:
Molecular Pathways: Activating T cells after cancer cell
phagocytosis from blockade of CD47 ‘don't eat me’ signals. Clin
Cancer Res. 21:3597–3601. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chao MP, Weissman IL and Majeti R: The
CD47-SIRPα pathway in cancer immune evasion and potential
therapeutic implications. Curr Opin Immunol. 24:225–232. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu J, Wang L, Zhao F, Tseng S, Narayanan
C, Shura L, Willingham S, Howard M, Prohaska S, Volkmer J, et al:
Pre-clinical development of a humanized anti-CD47 antibody with
anti-cancer therapeutic potential. PLoS One. 10:e01373452015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen J, Zhong MC, Guo H, Davidson D,
Mishel S, Lu Y, Rhee I, Pérez-Quintero LA, Zhang S, Cruz-Munoz ME,
et al: SLAMF7 is critical for phagocytosis of haematopoietic tumour
cells via Mac-1 integrin. Nature. 544:493–497. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Veillette A and Chen J: SIRPα-CD47 immune
checkpoint blockade in anticancer therapy. Trends Immunol.
39:173–184. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ratnikova NM, Lezhnin YN, Frolova EI,
Kravchenko JE and Chumakov SP: CD47 receptor as a primary target
for cancer therapy. Mol Biol (Mosk). 51:251–261. 2017.(In Russian).
View Article : Google Scholar : PubMed/NCBI
|
23
|
Weiskopf K: Cancer immunotherapy targeting
the CD47/SIRPα axis. Eur J Cancer. 76:100–109. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Brooke G, Holbrook JD, Brown MH and
Barclay AN: Human lymphocytes interact directly with CD47 through a
novel member of the signal regulatory protein (SIRP) family. J
Immunol. 173:2562–2570. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Majeti R, Chao MP, Alizadeh AA, Pang WW,
Jaiswal S, Gibbs KD Jr, van Rooijen N and Weissman IL: CD47 is an
adverse prognostic factor and therapeutic antibody target on human
acute myeloid leukemia stem cells. Cell. 138:286–299. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Willingham SB, Volkmer JP, Gentles AJ,
Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin
R, Cohen JD, et al: The CD47-signal regulatory protein alpha
(SIRPa) interaction is a therapeutic target for human solid tumors.
Proc Natl Acad Sci USA. 109:6662–6667. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Edris B, Weiskopf K, Volkmer AK, Volkmer
JP, Willingham SB, Contreras-Trujillo H, Liu J, Majeti R, West RB,
Fletcher JA, et al: Antibody therapy targeting the CD47 protein is
effective in a model of aggressive metastatic leiomyosarcoma. Proc
Natl Acad Sci USA. 109:6656–6661. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Krampitz GW, George BM, Willingham SB,
Volkmer JP, Weiskopf K, Jahchan N, Newman AM, Sahoo D, Zemek AJ,
Yanovsky RL, et al: Identification of tumorigenic cells and
therapeutic targets in pancreatic neuroendocrine tumors. Proc Natl
Acad Sci USA. 113:4464–4469. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Weiskopf K, Jahchan NS, Schnorr PJ,
Cristea S, Ring AM, Maute RL, Volkmer AK, Volkmer JP, Liu J, Lim
JS, et al: CD47-blocking immunotherapies stimulate
macrophage-mediated destruction of small-cell lung cancer. J Clin
Invest. 126:2610–2620. 2016. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Yao C, Li G, Cai M, Qian Y, Wang L, Xiao
L, Thaiss F and Shi B: Prostate cancer downregulated SIRP-α
modulates apoptosis and proliferation through p38-MAPK/NF-κB/COX-2
signaling. Oncol Lett. 13:4995–5001. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kapoor GS and O'Rourke DM: SIRPalpha1
receptors interfere with the EGFRvIII signalosome to inhibit
glioblastoma cell transformation and migration. Oncogene.
29:4130–4144. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yuan L, Yu WM, Yuan Z, Haudenschild CC and
Qu CK: Role of SHP-2 tyrosine phosphatase in the DNA damage-induced
cell death response. J Biol Chem. 278:15208–15216. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu CJ, Chen Z, Ullrich A, Greene MI and
O'Rourke DM: Inhibition of EGFR-mediated phosphoinositide-3-OH
kinase (PI3-K) signaling and glioblastoma phenotype by
signal-regulatory proteins (SIRPs). Oncogene. 19:3999–4010. 2000.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen TT, Brown EJ, Huang EJ and Seaman WE:
Expression and activation of signal regulatory protein alpha on
astrocytomas. Cancer Res. 64:117–127. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Oshima K, Machida K, Ichigotani Y, Nimura
Y, Shirafuji N, Hamaguchi M and Matsuda S: SHPS-1: A budding
molecule against cancer dissemination. Cancer Res. 62:3929–3933.
2002.PubMed/NCBI
|
36
|
Qin JM, Yan HX, Liu SQ, Wan XW, Zeng JZ,
Cao HF, Qiu XH, Wu MC and Wang HY: Negatively regulating mechanism
of Sirpalpha1 in hepatocellular carcinoma: An experimental study.
Hepatobiliary Pancreat Dis Int. 5:246–251. 2006.PubMed/NCBI
|
37
|
Yan HX, Wang HY, Zhang R, Chen L, Li BA,
Liu SQ, Cao HF, Qiu XH, Shan YF, Yan ZH, et al: Negative regulation
of hepatocellular carcinoma cell growth by signal regulatory
protein alpha1. Hepatology. 40:618–628. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Seiffert M, Cant C, Chen Z, Rappold I,
Brugger W, Kanz L, Brown EJ, Ullrich A and Bühring HJ: Human
signal-regulatory protein is expressed on normal, but not on
subsets of leukemic myeloid cells and mediates cellular adhesion
involving its counterreceptor CD47. Blood. 94:3633–3643.
1999.PubMed/NCBI
|
39
|
Iseki Y, Nakahara M, Kubo M, Obata F,
Harigae H and Takahashi S: Correlation of PU.1 and signal
regulatory protein α1 expression in PU.1 transgenic K562 cells. Int
J Mol Med. 29:319–323. 2012.PubMed/NCBI
|
40
|
Rosenbauer F, Wagner K, Kutok JL, Iwasaki
H, Le Beau MM, Okuno Y, Akashi K, Fiering S and Tenen DG: Acute
myeloid leukemia induced by graded reduction of a lineage-specific
transcription factor, PU.1. Nat Genet. 36:624–630. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Takahashi S: PU.1, a versatile
transcription factor and a suppressor of myeloid leukemia. In:
Myeloid leukemia - basic mechanisms of leukemogenesis. Koschmieder
Steffen: InTech Europe, Rijeka, Croatia. pp. 239–262. 2011
|
42
|
Gavert N and Ben-Ze'ev A: beta-Catenin
signaling in biological control and cancer. J Cell Biochem.
102:820–828. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Milella M, Kornblau SM, Estrov Z, Carter
BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E and
Andreeff M: Therapeutic targeting of the MEK/MAPK signal
transduction module in acute myeloid leukemia. J Clin Invest.
108:851–859. 2001. View
Article : Google Scholar : PubMed/NCBI
|
44
|
Platanias LC: Map kinase signaling
pathways and hematologic malignancies. Blood. 101:4667–4679. 2003.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Martelli AM, Nyåkern M, Tabellini G,
Bortul R, Tazzari PL, Evangelisti C and Cocco L: Phosphoinositide
3-kinase/Akt signaling pathway and its therapeutical implications
for human acute myeloid leukemia. Leukemia. 20:911–928. 2006.
View Article : Google Scholar : PubMed/NCBI
|