1
|
Gronthos S, Mankani M, Brahim J, Robey PG
and Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro
and in vivo. Proc Natl Acad Sci USA. 97:13625–13630. 2000.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Gronthos S, Brahim J, Li W, Fisher LW,
Cherman N, Boyde A, DenBesten P, Robey PG and Shi S: Stem cell
properties of human dental pulp stem cells. J Dent Res. 81:531–535.
2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huang GT, Gronthos S and Shi S:
Mesenchymal stem cells derived from dental tissues vs. those from
other sources: Their biology and role in regenerative medicine. J
Dent Res. 88:792–806. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nuti N, Corallo C, Chan BM, Ferrari M and
Gerami-Naini B: Multipotent differentiation of Human dental pulp
stem cells: A literature review. Stem Cell Rev. 12:511–523. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Sharpe PT: Dental mesenchymal stem cells.
Development. 143:2273–2280. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Heng BC, Lim LW, Wu W and Zhang C: An
overview of protocols for the neural induction of dental and oral
stem cells in vitro. Tissue Eng Part B Rev. 22:220–250. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Chai Y, Jiang X, Ito Y, Bringas P Jr, Han
J, Rowitch DH, Soriano P, McMahon AP and Sucov HM: Fate of the
mammalian cranial neural crest during tooth and mandibular
morphogenesis. Development. 127:1671–1679. 2000.PubMed/NCBI
|
8
|
Song M, Lee JH, Bae J, Bu Y and Kim EC:
Human dental pulp stem cells are more effective than human bone
marrow-derived mesenchymal stem cells in cerebral ischemic injury.
Cell Transplant. 26:1001–1016. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang C, Li X, Sun L, Guo W and Tian W:
Potential of human dental stem cells in repairing the complete
transection of rat spinal cord. J Neural Eng. 14:0260052017.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sasaki R, Aoki S, Yamato M, Uchiyama H,
Wada K, Ogiuchi H, Okano T and Ando T: PLGA artificial nerve
conduits with dental pulp cells promote facial nerve regeneration.
J Tissue Eng Regen Med. 5:823–830. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mead B, Logan A, Berry M, Leadbeater W and
Scheven BA: Intravitreally transplanted dental pulp stem cells
promote neuroprotection and axon regeneration of retinal ganglion
cells after optic nerve injury. Invest Ophthalmol Vis Sci.
54:7544–7556. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Arthur A, Koblar S, Shi S and Gronthos S:
Eph/ephrinB mediate dental pulp stem cell mobilization and
function. J Dent Res. 88:829–834. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Laussu J, Audouard C, Kischel A,
Assis-Nascimento P, Escalas N, Liebl DJ, Soula C and Davy A:
Eph/Ephrin signaling controls progenitor identities in the ventral
spinal cord. Neural Dev. 12:102017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Luxey M, Laussu J and Davy A: EphrinB2
sharpens lateral motor column division in the developing spinal
cord. Neural Dev. 10:252015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yue Y, Widmer DA, Halladay AK, Cerretti
DP, Wagner GC, Dreyer JL and Zhou R: Specification of distinct
dopaminergic neural pathways: Roles of the Eph family receptor
EphB1 and ligand ephrin-B2. J Neurosci. 19:2090–2101. 1999.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ottone C, Krusche B, Whitby A, Clements M,
Quadrato G, Pitulescu ME, Adams RH and Parrinello S: Direct
cell-cell contact with the vascular niche maintains quiescent
neural stem cells. Nat Cell Biol. 16:1045–1056. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ashton RS, Conway A, Pangarkar C, Bergen
J, Lim KI, Shah P, Bissell M and Schaffer DV: Astrocytes regulate
adult hippocampal neurogenesis through ephrin-B signaling. Nat
Neurosci. 15:1399–1406. 2012. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Barquilla A and Pasquale EB: Eph receptors
and ephrins: Therapeutic opportunities. Annu Rev Pharmacol Toxicol.
55:465–487. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nikolov DB, Xu K and Himanen JP:
Eph/ephrin recognition and the role of Eph/ephrin clusters in
signaling initiation. Biochim Biophys Acta. 1834:2160–2165. 2013.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Heng BC, Wang S, Gong T, Xu J, Yuan C and
Zhang C: EphrinB2 signaling enhances osteogenic/odontogenic
differentiation of human dental pulp stem cells. Arch Oral Biol.
87:62–71. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chrencik JE, Brooun A, Recht MI, Nicola G,
Davis LK, Abagyan R, Widmer H, Pasquale EB and Kuhn P:
Three-dimensional structure of the EphB2 receptor in complex with
an antagonistic peptide reveals a novel mode of inhibition. J Biol
Chem. 282:36505–36513. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zou T, Dissanayaka WL, Jiang S, Wang S,
Heng BC, Huang X and Zhang C: Semaphorin 4D enhances angiogenic
potential and suppresses osteo-/odontogenic differentiation of
human dental pulp stem cells. J Endod. 43:297–305. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Heng BC, Gong T, Wang S, Lim LW, Wu W and
Zhang C: Decellularized matrix derived from neural differentiation
of embryonic stem cells enhances the neurogenic potential of dental
follicle stem cells. J Endod. 43:409–416. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Davis S, Gale NW, Aldrich TH, Maisonpierre
PC, Lhotak V, Pawson T, Goldfarb M and Yancopoulos GD: Ligands for
EPH-related receptor tyrosine kinases that require membrane
attachment or clustering for activity. Science. 266:816–819. 1994.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Xiaodong H, Zhen H, Min S, Zhiming C,
Hongyan J, Chong Z, Xuefeng T and Guohua J: Direct inhibition of
cell surface ephrin-B2 by recombinant ephrin-B2/FC. Biochem Biophys
Res Commun. 440:300–305. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Conway A, Vazin T, Spelke DP, Rode NA,
Healy KE, Kane RS and Schaffer DV: Multivalent ligands control stem
cell behaviour in vitro and in vivo. Nat Nanotechnol. 8:831–838.
2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Conway A and Schaffer DV: Biomaterial
microenvironments to support the generation of new neurons in the
adult brain. Stem Cells. 32:1220–1229. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Stokowski A, Shi S, Sun T, Bartold PM,
Koblar SA and Gronthos S: EphB/ephrin-B interaction mediates adult
stem cell attachment, spreading, and migration: Implications for
dental tissue repair. Stem Cells. 25:156–164. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kawano H, Katayama Y, Minagawa K,
Shimoyama M, Henkemeyer M and Matsui T: A novel feedback mechanism
by Ephrin-B1/B2 in T-cell activation involves a
concentration-dependent switch from costimulation to inhibition.
Eur J Immunol. 42:1562–1572. 2012. View Article : Google Scholar : PubMed/NCBI
|