1
|
Kiernan MC, Vucic S, Cheah BC, Turner MR,
Eisen A, Hardiman O, Burrell JR and Zoing MC: Amyotrophic lateral
sclerosis. Lancet. 377:942–955. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hardiman O, van den Berg LH and Kiernan
MC: Clinical diagnosis and management of amyotrophic lateral
sclerosis. Nat Rev Neurol. 7:639–649. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Logroscino G, Traynor BJ, Hardiman O, Chiò
A, Mitchell D, Swingler RJ, Millul A, Benn E and Beghi E: EURALS:
Incidence of amyotrophic lateral sclerosis in Europe. J Neurol
Neurosurg Psychiatry. 81:385–390. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Couratier P, Corcia P, Lautrette G, Nicol
M, Preux PM and Marin B: Epidemiology of amyotrophic lateral
sclerosis: A review of literature. Rev Neurol (Paris). 172:37–45.
2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Byrne S, Walsh C, Lynch C, Bede P, Elamin
M, Kenna K, McLaughlin R and Hardiman O: Rate of familial
amyotrophic lateral sclerosis: A systematic review and
meta-analysis. J Neurol Neurosurg Psychiatry. 82:623–627. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zarei S, Carr K, Reiley L, Diaz K, Guerra
O, Altamirano PF, Pagani W, Lodin D, Orozco G and Chinea A: A
comprehensive review of amyotrophic lateral sclerosis. Surg Neurol
Int. 6:1712015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Holecek V and Rokyta R: Possible etiology
and treatment of amyotrophic lateral sclerosis. Neuro Endocrinol
Lett. 38:528–531. 2018.PubMed/NCBI
|
8
|
Redler RL and Dokholyan NV: The complex
molecular biology of amyotrophic lateral sclerosis (ALS). Prog Mol
Biol Transl Sci. 107:215–262. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cookson MR and Shaw PJ: Oxidative stress
and motor neurone disease. Brain Pathol. 9:165–186. 1999.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK,
Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, et al: Role of
excitatory amino acid transporter-2 (EAAT2) and glutamate in
neurodegeneration: Opportunities for developing novel therapeutics.
J Cell Physiol. 226:2484–2493. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Taylor JP, Hardy J and Fischbeck KH: Toxic
proteins in neurodegenerative disease. Science. 296:1991–1995.
2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rosen DR, Siddique T, Patterson D,
Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP,
Deng HX, et al: Mutations in Cu/Zn superoxide dismutase gene are
associated with familial amyotrophic lateral sclerosis. Nature.
362:59–62. 1993. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Jeong SY, Rathore KI, Schulz K, Ponka P,
Arosio P and David S: Dysregulation of iron homeostasis in the CNS
contributes to disease progression in a mouse model of amyotrophic
lateral sclerosis. J Neurosci. 29:610–619. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Oshiro S, Morioka MS and Kikuchi M:
Dysregulation of iron metabolism in Alzheimer's disease,
Parkinson's disease, and amyotrophic lateral sclerosis. Adv
Pharmacol Sci. 2011:3782782011.PubMed/NCBI
|
15
|
Hadzhieva M, Kirches E, Wilisch-Neumann A,
Pachow D, Wallesch M, Schoenfeld P, Paege I, Vielhaber S, Petri S,
Keilhoff G, et al: Dysregulation of iron protein expression in the
G93A model of amyotrophic lateral sclerosis. Neuroscience.
230:94–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen P, Miah MR and Aschner M: Metals and
Neurodegeneration. F1000Res. Mar 17–2016.doi:
10.12688/f1000research.7431.1. View Article : Google Scholar
|
17
|
Veyrat-Durebex C, Corcia P, Mucha A,
Benzimra S, Mallet C, Gendrot C, Moreau C, Devos D, Piver E, Pagès
JC, et al: Iron metabolism disturbance in a French cohort of ALS
patients. BioMed Res Int. 2014:4857232014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kasarskis EJ, Tandon L, Lovell MA and
Ehmann WD: Aluminum, calcium, and iron in the spinal cord of
patients with sporadic amyotrophic lateral sclerosis using laser
microprobe mass spectroscopy: A preliminary study. J Neurol Sci.
130:203–208. 1995. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ince PG, Shaw PJ, Candy JM, Mantle D,
Tandon L, Ehmann WD and Markesbery WR: Iron, selenium and
glutathione peroxidase activity are elevated in sporadic motor
neuron disease. Neurosci Lett. 182:87–90. 1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hozumi I, Hasegawa T, Honda A, Ozawa K,
Hayashi Y, Hashimoto K, Yamada M, Koumura A, Sakurai T, Kimura A,
et al: Patterns of levels of biological metals in CSF differ among
neurodegenerative diseases. J Neurol Sci. 303:95–99. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zheng Y, Gao L, Wang D and Zang D:
Elevated levels of ferritin in the cerebrospinal fluid of
amyotrophic lateral sclerosis patients. Acta Neurol Scand.
136:145–150. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Qureshi M, Brown RH Jr, Rogers JT and
Cudkowicz ME: Serum ferritin and metal levels as risk factors for
amyotrophic lateral sclerosis. Open Neurol J. 2:51–54. 2008.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Goodall EF, Haque MS and Morrison KE:
Increased serum ferritin levels in amyotrophic lateral sclerosis
(ALS) patients. J Neurol. 255:1652–1656. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ikeda K, Hirayama T, Takazawa T, Kawabe K
and Iwasaki Y: Relationships between disease progression and serum
levels of lipid, urate, creatinine and ferritin in Japanese
patients with amyotrophic lateral sclerosis: A cross-sectional
study. Intern Med. 51:1501–1508. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nadjar Y, Gordon P, Corcia P, Bensimon G,
Pieroni L, Meininger V and Salachas F: Elevated serum ferritin is
associated with reduced survival in amyotrophic lateral sclerosis.
PLoS One. 7:e450342012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Su XW, Clardy SL, Stephens HE, Simmons Z
and Connor JR: Serum ferritin is elevated in amyotrophic lateral
sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener.
16:102–107. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Brooks BR: El Escorial World Federation of
Neurology criteria for the diagnosis of amyotrophic lateral
sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic
Lateral Sclerosis of the World Federation of Neurology Research
Group on Neuromuscular Diseases and the El Escorial ‘Clinical
limits of amyotrophic lateral sclerosis’ workshop contributors. J
Neurol Sci. 124:96–107. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kollewe K, Mauss U, Krampfl K, Petri S,
Dengler R and Mohammadi B: ALSFRS-R score and its ratio: A useful
predictor for ALS-progression. J Neurol Sci. 275:69–73. 2008.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lechtzin N, Maragakis NJ, Kimball R, Busse
A, Hoffman V and Clawson L: Accurate ALSFRS-R scores can be
generated from retrospective review of clinic notes. Amyotroph
Lateral Scler. 10:244–247. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Contestabile A: Amyotrophic lateral
sclerosis: From research to therapeutic attempts and therapeutic
perspectives. Curr Med Chem. 18:5655–5665. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jomova K, Vondrakova D, Lawson M and Valko
M: Metals, oxidative stress and neurodegenerative disorders. Mol
Cell Biochem. 345:91–104. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Boldt DH: New perspectives on iron: An
introduction. Am J Med Sci. 318:207–212. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Qian ZM and Wang Q: Expression of iron
transport proteins and excessive iron accumulation in the brain in
neurodegenerative disorders. Brain Res Brain Res Rev. 27:257–267.
1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rivera-Mancía S, Pérez-Neri I, Ríos C,
Tristán-López L, Rivera-Espinosa L and Montes S: The transition
metals copper and iron in neurodegenerative diseases. Chem Biol
Interact. 186:184–199. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Casadesus G, Smith MA, Zhu X, Aliev G,
Cash AD, Honda K, Petersen RB and Perry G: Alzheimer disease:
Evidence for a central pathogenic role of iron-mediated reactive
oxygen species. J Alzheimers Dis. 6:165–169. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Castellani RJ, Moreira PI, Liu G, Dobson
J, Perry G, Smith MA and Zhu X: Iron: The Redox-active center of
oxidative stress in Alzheimer disease. Neurochem Res. 32:1640–1645.
2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Smith MA, Harris PL, Sayre LM and Perry G:
Iron accumulation in Alzheimer disease is a source of
redox-generated free radicals. Proc Natl Acad Sci USA.
94:9866–9868. 1997. View Article : Google Scholar : PubMed/NCBI
|
38
|
Olsen MK, Roberds SL, Ellerbrock BR, Fleck
TJ, McKinley DK and Gurney ME: Disease mechanisms revealed by
transcription profiling in SOD1-G93A transgenic mouse spinal cord.
Ann Neurol. 50:730–740. 2001. View
Article : Google Scholar : PubMed/NCBI
|
39
|
Yu J, Guo Y, Sun M, Li B, Zhang Y and Li
C: Iron is a potential key mediator of glutamate excitotoxicity in
spinal cord motor neurons. Brain Res. 1257:102–107. 2009.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Langkammer C, Enzinger C, Quasthoff S,
Grafenauer P, Soellinger M, Fazekas F and Ropele S: Mapping of iron
deposition in conjunction with assessment of nerve fiber tract
integrity in amyotrophic lateral sclerosis. J Magn Reson Imaging.
31:1339–1345. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Mitchell RM, Simmons Z, Beard JL, Stephens
HE and Connor JR: Plasma biomarkers associated with ALS and their
relationship to iron homeostasis. Muscle Nerve. 42:95–103. 2010.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Petri S, Körner S and Kiaei M: Nrf2/ARE
signaling pathway: Key mediator in oxidative stress and potential
therapeutic target in ALS. Neurol Res Int. 2012:8780302012.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang Q, Zhang X, Chen S, Zhang X, Zhang S,
Youdium M and Le W: Prevention of motor neuron degeneration by
novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic
lateral sclerosis. Neurodegener Dis. 8:310–321. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Golko-Perez S, Mandel S, Amit T,
Kupershmidt L, Youdim MB and Weinreb O: Additive Neuroprotective
effects of the multifunctional iron chelator M30 with enriched diet
in a mouse model of amyotrophic lateral sclerosis. Neurotox Res.
29:208–217. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Greenwood DI: Nutrition management of
amyotrophic lateral sclerosis. Nutr Clin Pract. 28:392–399. 2013.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Traynor BJ, Codd MB, Corr B, Forde C,
Frost E and Hardiman OM: Clinical features of amyotrophic lateral
sclerosis according to the El Escorial and Airlie House diagnostic
criteria: A population-based study. Arch Neurol. 57:1171–1176.
2000. View Article : Google Scholar : PubMed/NCBI
|
47
|
Molfino A, Kushta I, Tommasi V, Fanelli
Rossi F and Muscaritoli M: Amyotrophic lateral sclerosis, enteral
nutrition and the risk of iron overload. J Neurol. 256:1015–1016.
2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Yu J, Qi F, Wang N, Gao P, Dai S, Lu Y, Su
Q, Du Y and Che F: Increased iron level in motor cortex of
amyotrophic lateral sclerosis patients: An in vivo MR study.
Amyotroph Lateral Scler Frontotemporal Degener. 15:357–361. 2014.
View Article : Google Scholar : PubMed/NCBI
|