1
|
Lozano R, Naghavi M, Foreman K, Lim S,
Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et
al: Global and regional mortality from 235 causes of death for 20
age groups in 1990 and 2010: A systematic analysis for the Global
Burden of Disease Study 2010. Lancet. 380:2095–2128. 2012.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Libby P: Mechanisms of acute coronary
syndromes and their implications for therapy. N Engl J Med.
368:2004–2013. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Libby P, Ridker PM and Hansson GK; Leducq
Transatlantic Network on Atherothrombosis, . Inflammation in
atherosclerosis: From pathophysiology to practice. J Am Coll
Cardiol. 54:2129–2138. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dong L, Qu X, Hu ZG, Peng X, Wang Y, Miao
Q and Zhang X: Lipoprotein-associated phospholipase A2 is
associated with angiographic coronary artery disease and coronary
artery risk factors in the elderly. Int J Gerontol. 9:82–86. 2015.
View Article : Google Scholar
|
5
|
Ikonomidis I, Kadoglou NN, Tritakis V,
Paraskevaidis I, Dimas K, Trivilou P, Papadakis I, Tzortzis S,
Triantafyllidi H, Parissis J, et al: Association of Lp-PLA2 with
digital reactive hyperemia, coronary flow reserve, carotid
atherosclerosis and arterial stiffness in coronary artery disease.
Atherosclerosis. 234:34–41. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gilstrap LG and Wang TJ: Biomarkers and
cardiovascular risk assessment for primary prevention: An update.
Clin Chem. 58:72–82. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cai A, Zheng D, Qiu R, Mai W and Zhou Y:
Lipoprotein-associated phospholipase A2 (Lp-PLA(2)): A novel and
promising biomarker for cardiovascular risks assessment. Dis
Markers. 34:323–331. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cai A, Li G, Chen J, Li X, Li L and Zhou
Y: Increased serum level of Lp-PLA2 is independently associated
with the severity of coronary artery diseases: a cross-sectional
study of Chinese population. BMC Cardiovasc Disord. 15:142015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rosenberg RD and Aird WC: Vascular-bed -
specific hemostasis and hypercoagulable states. N Engl J Med.
340:1555–1564. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Eagle KA, Lim MJ, Dabbous OH, Pieper KS,
Goldberg RJ, Van de Werf F, Goodman SG, Granger CB, Steg PG, Gore
JM, et al; GRACE Investigators, . A validated prediction model for
all forms of acute coronary syndrome: Estimating the risk of
6-month postdischarge death in an international registry. JAMA.
291:2727–2733. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gensini GG: A more meaningful scoring
system for determining the severity of coronary heart disease. Am J
Cardiol. 51:606. 1983. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yang L, Liu Y, Wang S, Liu T and Cong H:
Association between Lp-PLA2 and coronary heart disease in Chinese
patients. J Int Med Res. 45:159–169. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Burke JE, Dennis EA and Phospholipase A:
Phospholipase A2 biochemistry. Cardiovasc Drugs Ther. 23:49–59.
2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ran L, Hao HJ, Liu LL, Luo JJ, Wen JX and
Gao F: Biomarkers of atherosclerotic plaque vulnerability and their
clinical significance. Chin J Contemp Neurol Neurosurg. 16:566–572.
2016.
|
15
|
Maiolino G, Bisogni V, Rossitto G and
Rossi GP: Lipoprotein-associated phospholipase A2 prognostic role
in atherosclerotic complications. World J Cardiol. 7:609–620. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Six DA and Dennis EA: The expanding
superfamily of phospholipase A(2) enzymes: Classification and
characterization. Biochim Biophys Acta. 1488:1–19. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mattina A, Rosenbaum D, Bittar R,
Bonnefont-Rousselot D, Noto D, Averna M, Bruckert E and Giral P:
Lipoprotein-associated phospholipase A2 activity is increased in
patients with definite familial hypercholesterolemia compared with
other forms of hypercholesterolemia. Nutr Metab Cardiovasc Dis.
28:517–523. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lavi S, McConnell JP, Rihal CS, Prasad A,
Mathew V, Lerman LO and Lerman A: Local production of
lipoprotein-associated phospholipase A2 and lysophosphatidylcholine
in the coronary circulation: Association with early coronary
atherosclerosis and endothelial dysfunction in humans. Circulation.
115:2715–2721. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tan HY, Wang N, Li S, Hong M, Wang X and
Feng Y: The reactive oxygen species in macrophage polarization:
Reflecting its dual role in progression and treatment of human
diseases. Oxid Med Cell Longev. 2016:27950902016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jellinger PS, Smith DA, Mehta AE, Ganda O,
Handelsman Y, Rodbard HW, Shepherd MD and Seibel JA; AACE task
force for management of dyslipidemia and prevention of
atherosclerosis, . American Association of Clinical
Endocrinologists' Guidelines for Management of Dyslipidemia and
Prevention of Atherosclerosis: Executive summary. Endocr Pract.
18:269–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Perk J, De Backer G, Gohlke H, Graham I,
Reiner Z, Verschuren WM, Albus C, Benlian P, Boysen G, Cifkova R,
et al; European Association for Cardiovascular Prevention &
Rehabilitation (EACPR), . European guidelines on cardiovascular
disease prevention in clinical practice (version 2012): The fifth
joint task force of the European society of cardiology and other
societies on cardiovascular disease prevention in clinical practice
(constituted by representatives of nine societies and by invited
experts). Int J Behav Med. 19:403–488. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Packard CJ, O'Reilly DS, Caslake MJ,
McMahon AD, Ford I, Cooney J, Macphee CH, Suckling KE, Krishna M,
Wilkinson FE, et al; West of Scotland Coronary Prevention Study
Group, . Lipoprotein-associated phospholipase A2 as an independent
predictor of coronary heart disease. N Engl J Med. 343:1148–1155.
2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Willeit J, Kiechl S, Oberhollenzer F,
Rungger G, Egger G, Bonora E, Mitterer M and Muggeo M: Distinct
risk profiles of early and advanced atherosclerosis: Prospective
results from the Bruneck Study. Arterioscler Thromb Vasc Biol.
20:529–537. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Szadujkis-Szadurska K, Grzesk G,
Szadujkis-Szadurski L, Gajdus M and Matusiak G: Role of nitric
oxide and cGMP in the modulation of vascular contraction induced by
angiotensin II and Bay K8644 during ischemia/reperfusion. Exp Ther
Med. 5:616–620. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Catena C, Colussi G, Brosolo G and Sechi
LA: A prothrombotic state is associated with early arterial damage
in hypertensive patients. J Atheroscler Thromb. 19:471–478. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Koch M and Zernecke A: The hemostatic
system as a regulator of inflammation in atherosclerosis. IUBMB
Life. 66:735–744. 2014. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Kubica J, Kozinski M, Krzewina-Kowalska A,
Zbikowska-Gotz M, Dymek G, Sukiennik A, Piasecki R, Bogdan M,
Grzesk G, Chojnicki M, et al: Combined periprocedural evaluation of
CRP and TNF-alpha enhances the prediction of clinical restenosis
and major adverse cardiac events in patients undergoing
percutaneous coronary interventions. Int J Mol Med. 16:173–180.
2005.PubMed/NCBI
|
28
|
Thompson SG, Fechtrup C, Squire E, Heyse
U, Breithardt G, van de Loo JC and Kienast J: Antithrombin III and
fibrinogen as predictors of cardiac events in patients with angina
pectoris. Arterioscler Thromb Vasc Biol. 16:357–362. 1996.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Innerfield I, Goldfischer JD,
Reicher-Reiss H and Greenberg J: Serum antithrombin in
coronary-artery disease. Am J Clin Pathol. 65:64–68. 1976.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hong X, Shan PR, Hu L, Huang ZQ, Wu GJ,
Xiao FY and Huang WJ: Relationship between antithrombin-III value
with acute coronary syndrome and preprocedural TIMI flow grade.
Zhonghua Yi Xue Za Zhi. 92:831–834. 2012.(In Chinese). PubMed/NCBI
|
31
|
Pedersen OD, Gram J and Jespersen J:
Plasminogen activator inhibitor type-1 determines plasmin formation
in patients with ischaemic heart disease. Thromb Haemost.
73:835–840. 1995. View Article : Google Scholar : PubMed/NCBI
|
32
|
Brummel-Ziedins K, Undas A, Orfeo T,
Gissel M, Butenas S, Zmudka K and Mann KG: Thrombin generation in
acute coronary syndrome and stable coronary artery disease:
Dependence on plasma factor composition. J Thromb Haemost.
6:104–110. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lipets EN and Ataullakhanov FI: Global
assays of hemostasis in the diagnostics of hypercoagulation and
evaluation of thrombosis risk. Thromb J. 13:42015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Johnson DJD, Li W, Adams TE and Huntington
JA: Antithrombin-S195A factor Xa-heparin structure reveals the
allosteric mechanism of antithrombin activation. EMBO J.
25:2029–2037. 2006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pastorova VE, Bazazian GG and Liapina LA:
Antithrombin III activity in long-developing hypercoagulation in
animals. Biull Eksp Biol Med. 98:560–563. 1984.(In Russian).
View Article : Google Scholar : PubMed/NCBI
|
36
|
Schafer AI: The hypercoagulable states.
Ann Intern Med. 102:814–828. 1985. View Article : Google Scholar : PubMed/NCBI
|
37
|
Winter JH, Bennett B, McTaggart F and
Douglas AS: Lipoprotein fractions and antithrombin III consumption
during clotting. Thromb Haemost. 47:236–238. 1982. View Article : Google Scholar : PubMed/NCBI
|