1
|
Tham YK, Bernardo BC, Ooi JY, Weeks KL and
McMullen JR: Pathophysiology of cardiac hypertrophy and heart
failure: Signaling pathways and novel therapeutic targets. Arch
Toxicol. 89:1401–1438. 2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Soliman EZ and Prineas RJ:
Antihypertensive therapies and left ventricular hypertrophy. Curr
Hypertens Rep. 19(79)2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Ikeda Y, Kumagai H, Motozawa Y, Suzuki J
and Komuro I: Biased agonism of the angiotensin II type I receptor.
Int Heart J. 56:485–488. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Wang S, Gong H, Jiang G, Ye Y, Wu J, You
J, Zhang G, Sun A, Komuro I, Ge J and Zou Y: Src is required for
mechanical stretch-induced cardiomyocyte hypertrophy through
angiotensin II type 1 receptor-dependent beta-arrestin2 pathways.
PLoS One. 9(e92926)2014.PubMed/NCBI View Article : Google Scholar
|
5
|
Kolle G, Georgas K, Holmes GP, Little MH
and Yamada T: CRIM1, a novel gene encoding a cysteine-rich repeat
protein, is developmentally regulated and implicated in vertebrate
CNS development and organogenesis. Mech Dev. 90:181–193.
2000.PubMed/NCBI View Article : Google Scholar
|
6
|
Glienke J, Sturz A, Menrad A and Thierauch
KH: CRIM1 is involved in endothelial cell capillary formation in
vitro and is expressed in blood vessels in vivo. Mec Dev.
119:165–175. 2002.PubMed/NCBI View Article : Google Scholar
|
7
|
Wilkinson L, Kolle G, Wen D, Piper M,
Scott J and Little M: CRIM1 regulates the rate of processing and
delivery of bone morphogenetic proteins to the cell surface. J Biol
Chem. 278:34181–34188. 2003.PubMed/NCBI View Article : Google Scholar
|
8
|
Nakashima Y and Takahashi S: Induction of
cysteine-rich motor neuron 1 mRNA expression in vascular
endothelial cells. Biochem Biophys Res Commun. 451:235–238.
2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Iyer S, Pennisi DJ and Piper M: Crim1-, a
regulator of developmental organogenesis. Histol Histopathol.
31:1049–1057. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Iyer S, Chou FY, Wang R, Chiu HS, Raju VK,
Little MH, Thomas WG, Piper M and Pennisi DJ: Crim1 has
cell-autonomous and paracrine roles during embryonic heart
development. Sci Rep. 6(19832)2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Pennisi DJ, Wilkinson L, Kolle G, Sohaskey
ML, Gillinder K, Piper MJ, McAvoy JW, Lovicu FJ and Little MH:
Crim1KST264/KST264 mice display a disruption of the Crim1 gene
resulting in perinatal lethality with defects in multiple organ
systems. Dev Dyn. 236:502–511. 2007.PubMed/NCBI View Article : Google Scholar
|
12
|
Chiu HS, York JP, Wilkinson L, Zhang P,
Little MH and Pennisi DJ: Production of a mouse line with a
conditional Crim1 mutant allele. Genesis. 50:711–716.
2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Golden HB, Gollapudi D, Gerilechaogetu F,
Li J, Cristales RJ, Peng X and Dostal DE: Isolation of cardiac
myocytes and fibroblasts from neonatal rat pups. Methods Mol Biol.
843:205–214. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang GJ, Yao YS and Wang HX: Comparing
effects of U50488H, prazosin and/or propranolol on cardiac
hypertrophy induced by NE in rat. Zhongguo Ying Yong Sheng Li Xue
Za Zhi. 26:82–85. 2010.(In Chinese). PubMed/NCBI
|
15
|
Yang Y, Zhang H, Li X, Yang T and Jiang Q:
Effects of PPARα/PGC-1α on the energy metabolism remodeling and
apoptosis in the doxorubicin induced mice cardiomyocytes in vitro.
Int J Clin Exp Pathol. 8:12216–12224. 2015.PubMed/NCBI
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
17
|
Deng J, Pennati A, Cohen JB, Wu Y, Ng S,
Wu JH, Flowers CR and Galipeau J: GIFT4 fusokine converts leukemic
B cells into immune helper cells. J Transl Med.
14(106)2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Huang J, Wang D, Zheng J, Huang X and Jin
H: Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis
induced by abdominal aortic coarctation in rats. Mol Med Rep.
5:923–928. 2012.PubMed/NCBI View Article : Google Scholar
|
19
|
Sadoshima J, Xu Y, Slayter HS and Izumo S:
Autocrine release of angiotensin II mediates stretch-induced
hypertrophy of cardiac myocytes in vitro. Cell. 75:977–984.
1993.PubMed/NCBI
|
20
|
Arumugam S, Sreedhar R, Thandavarayan RA,
Karuppagounder V, Krishnamurthy P, Suzuki K, Nakamura M and
Watanabe K: Angiotensin receptor blockers: Focus on cardiac and
renal injury. Trends Cardiovasc Med. 26:221–228. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Wilkinson L, Gilbert T, Kinna G, Ruta LA,
Pennisi D, Kett M and Little MH: Crim1KST264/KST264 mice implicate
Crim1 in the regulation of vascular endothelial growth factor-A
activity during glomerular vascular development. J Am Soc Nephrol.
18:1697–1708. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Fan J, Ponferrada VG, Sato T, Vemaraju S,
Fruttiger M, Gerhardt H, Ferrara N and Lang RA: Crim1 maintains
retinal vascular stability during development by regulating
endothelial cell Vegfa autocrine signaling. Development.
141:448–459. 2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Sun B, Huo R, Sheng Y, Li Y, Xie X, Chen
C, Liu HB, Li N, Li CB, Guo WT, et al: Bone morphogenetic protein-4
mediates cardiac hypertrophy, apoptosis, and fibrosis in
experimentally pathological cardiac hypertrophy. Hypertension.
61:352–360. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Sun B, Sheng Y, Huo R, Hu CW, Lu J, Li SL,
Liu X, Wang YC and Dong DL: Bone morphogenetic protein-4
contributes to the down-regulation of Kv4.3 K+ channels in
pathological cardiac hypertrophy. Biochem Biophys Res Commun.
436:591–594. 2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Shahid M, Spagnolli E, Ernande L, Thoonen
R, Kolodziej SA, Leyton PA, Cheng J, Tainsh RE, Mayeur C, Rhee DK,
et al: BMP type I receptor ALK2 is required for angiotensin
II-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol.
310:H984–H994. 2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Izumiya Y, Shiojima I, Sato K, Sawyer DB,
Colucci WS and Walsh K: Vascular endothelial growth factor blockade
promotes the transition from compensatory cardiac hypertrophy to
failure in response to pressure overload. Hypertension. 47:887–893.
2006.PubMed/NCBI View Article : Google Scholar
|
27
|
Ferrara N: Vascular endothelial growth
factor. Arterioscler Thromb Vasc Biol. 29:789–791. 2009.PubMed/NCBI View Article : Google Scholar
|
28
|
Wilkinson L, Gilbert T, Sipos A, Toma I,
Pennisi DJ, Peti-Peterdi J and Little MH: Loss of renal
microvascular integrity in postnatal Crim1 hypomorphic transgenic
mice. Kidney Int. 76:1161–1171. 2009.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhang Y, Fan J, Ho JW, Hu T, Kneeland SC,
Fan X, Xi Q, Sellarole MA, de Vries WN, Lu W, et al: Crim1
regulates integrin signaling in murine lens development.
Development. 143:356–366. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Ross RS and Borg TK: Integrins and the
myocardium. Circ Res. 88:1112–1119. 2001.PubMed/NCBI
|
31
|
Israeli-Rosenberg S, Manso AM, Okada H and
Ross RS: Integrins and integrin-associated proteins in the cardiac
myocyte. Circ Res. 114:572–586. 2014.PubMed/NCBI View Article : Google Scholar
|
32
|
Takezako T, Unal H, Karnik SS and Node K:
Current topics in angiotensin II type 1 receptor research: Focus on
inverse agonism, receptor dimerization and biased agonism.
Pharmacol Res. 123:40–50. 2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Zou Y, Akazawa H, Qin Y, Sano M, Takano H,
Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, et al: Mechanical
stress activates angiotensin II type 1 receptor without the
involvement of angiotensin II. Nat Cell Biol. 6:499–506.
2004.PubMed/NCBI View
Article : Google Scholar
|
34
|
Akazawa H and Komuro I: Mechanisms
underlying angiotensin II-independent activation of angiotensin II
type 1 receptor. Nihon Rinsho. 70:1492–1498. 2012.(In Japanese).
PubMed/NCBI
|
35
|
Dargad RR, Parekh JD, Dargad RR and
Kukrety S: Azilsartan: Novel angiotensin receptor blocker. J Assoc
Physicians India. 64:96–98. 2016.PubMed/NCBI
|