1
|
Hernández-Pedro NY, Espinosa-Ramirez G, de
la Cruz VP, Pineda B and Sotelo J: Initial immunopathogenesis of
multiple sclerosis: Innate immune response. Clin Dev Immunol.
2013(413465)2013.PubMed/NCBI View Article : Google Scholar
|
2
|
Frohman EM, Racke MK and Raine CS:
Multiple sclerosi - the plaque and its pathogenesis. N Engl J Med.
354:942–955. 2006.PubMed/NCBI View Article : Google Scholar
|
3
|
Goldenberg MM: Multiple sclerosis review.
PT. 37:175–184. 2012.PubMed/NCBI
|
4
|
Kister I, Bacon TE, Chamot E, Salter AR,
Cutter GR, Kalina JT and Herbert J: Natural history of multiple
sclerosis symptoms. Int J MS Care. 15:146–158. 2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Loma I and Heyman R: Multiple sclerosis:
Pathogenesis and treatment. Curr Neuropharmacol. 9:409–416.
2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Kennedy J, O'Connor P, Sadovnick AD,
Perara M, Yee I and Banwell B: Age at onset of multiple sclerosis
may be influenced by place of residence during childhood rather
than ancestry. Neuroepidemiology. 26:162–167. 2006.PubMed/NCBI View Article : Google Scholar
|
7
|
Harbo HF, Gold R and Tintoré M: Sex and
gender issues in multiple sclerosis. Ther Adv Neurol Disorder.
6:237–248. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Simpson S Jr, Blizzard L, Otahal P, Van
der Mei I and Taylor B: Latitude is significantly associated with
the prevalence of multiple sclerosis: A meta-analysis. J Neurol
Neurosurg Psychiatry. 82:1132–1141. 2011.PubMed/NCBI View Article : Google Scholar
|
9
|
Ebers GC: Environmental factors and
multiple sclerosis. Lancet Neurol. 7:268–277. 2008.PubMed/NCBI View Article : Google Scholar
|
10
|
Al-Afasy HH, Al-Obaidan MA, Al-Ansari YA,
Al-Yatama SA, Al-Rukaibi MS, Makki NI, Suresh A and Akhtar S: Risk
factors for multiple sclerosis in Kuwait: A population-based
case-control study. Neuroepidemiology. 40:30–35. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Bohlega S, Inshasi J, Al Tahan AR, Madani
AB, Qahtani H and Rieckmann P: Multiple sclerosis in the Arabian
Gulf countries: A consensus statement. J Neurol. 260:2959–2963.
2013.PubMed/NCBI View Article : Google Scholar
|
12
|
O'Gorman C, Lucas R and Taylor B:
Environmental risk factors for multiple sclerosis: A review with a
focus on molecular mechanisms. Int J Mol Sci. 13:11718–11752.
2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Mandia D, Ferraro OE, Nosari G, Montomoli
C, Zardini E and Bergamaschi R: Environmental factors and multiple
sclerosis severity: A descriptive study. Int J Environ Res Public
Health. 11:6417–6432. 2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Zuvich RL, McCauley JL, Pericak-Vance MA
and Haines JL: Genetics and pathogenesis of multiple sclerosis.
Semin Immunol. 21:328–333. 2009.PubMed/NCBI View Article : Google Scholar
|
15
|
Dutta R, McDonough J, Yin X, Peterson J,
Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, et al:
Mitochondrial dysfunction as a cause of axonal degeneration in
multiple sclerosis patients. Ann Neurol. 59:478–489.
2006.PubMed/NCBI View Article : Google Scholar
|
16
|
Mahad D, Lassmann H and Turnbull D:
Review: Mitochondria and disease progression in multiple sclerosis.
Neuropathol Appl Neurobiol. 34:577–589. 2008.PubMed/NCBI View Article : Google Scholar
|
17
|
Mao P and Reddy PH: Is multiple sclerosis
a mitochondrial disease? Biochim Biophys Acta. 1802:66–79.
2010.PubMed/NCBI View Article : Google Scholar
|
18
|
Peruzzotti-Jametti L and Pluchino S:
Targeting mitochondrial metabolism in neuroinflammation: Towards a
therapy for progressive multiple sclerosis. Trends Mol Med.
24:838–855. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Taanman JW: The mitochondrial genome:
Structure, transcription, translation and replication. Biochim
Biophys Acta. 1410:103–123. 1999.PubMed/NCBI View Article : Google Scholar
|
20
|
Wirth C, Brandt U, Hunte C and Zickermann
V: Structure and function of mitochondrial complex I. Biochim
Biophys Acta. 1857:902–914. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Bohr VA: Repair of oxidative DNA damage in
nuclear and mitochondrial DNA, and some changes with aging in
mammalian cells. Free Radic Biol Med. 32:804–812. 2002.PubMed/NCBI View Article : Google Scholar
|
22
|
Santos JH, Hunakova L, Chen Y, Bortner C
and Van Houten B: Cell sorting experiments link persistent
mitochondrial DNA damage with loss of mitochondrial membrane
potential and apoptotic cell death. J Biol Chem. 278:1728–1734.
2003.PubMed/NCBI View Article : Google Scholar
|
23
|
Dirks AJ, Hofer T, Marzetti E, Pahor M and
Leeuwenburgh C: Mitochondrial DNA mutations, energy metabolism and
apoptosis in aging muscle. Ageing Res Rev. 5:179–195.
2006.PubMed/NCBI View Article : Google Scholar
|
24
|
Al-Kafaji G, Sabry MA and Skrypnyk C:
Time-course effect of high-glucose-induced reactive oxygen species
on mitochondrial biogenesis and function in human renal mesangial
cells. Cell Biol Int. 40:36–48. 2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Cha MY, Kim DK and Mook-Jung I: The role
of mitochondrial DNA mutation on neurodegenerative diseases. Exp
Mol Med. 47(e150)2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Harding AE, Riordan-Eva P and Govan GG:
Mitochondrial DNA diseases: Genotype and phenotype in Leber's
hereditary optic neuropathy. Muscle Nerve Suppl. 3:S82–S84.
1995.PubMed/NCBI View Article : Google Scholar
|
27
|
Bargiela D and Chinnery PF: Mitochondria
in neuroinflammation - Multiple sclerosis (MS), leber hereditary
optic neuropathy (LHON) and LHON-MS. Neurosci Lett.
710(132932)2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Vyshkina T, Sylvester A, Sadiq S, Bonilla
E, Canter JA, Perl A and Kalman B: Association of common
mitochondrial DNA variants with multiple sclerosis and systemic
lupus erythematosus. Clin Immunol. 129:31–35. 2008.PubMed/NCBI View Article : Google Scholar
|
29
|
Zonouzi PA, Ghorbian S, Abkar M, Zonouzi
PA and Azadi A: Mitochondrial Complex I gene variations as a
potential risk factor in the pathogenesis of multiple sclerosis. J
Neurol Sci. 345:220–223. 2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Polman CH, Reingold SC, Banwell B, Clanet
M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M,
Kappos L, et al: Diagnostic criteria for multiple sclerosis: 2010
revisions to the McDonald criteria. Ann Neurol. 69:292–302.
2011.PubMed/NCBI View Article : Google Scholar
|
31
|
Al-Kafaji G, Aljadaan A, Kamal A and
Bakhiet M: Peripheral blood mitochondrial DNA copy number as a
novel potential biomarker for diabetic nephropathy in type 2
diabetes patients. Exp Ther Med. 16:1483–1492. 2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Rutherford K, Parkhill J, Crook J,
Horsnell T, Rice P, Rajandream MA and Barrell B: Artemis: Sequence
visualization and annotation. Bioinformatics. 16:944–945.
2000.PubMed/NCBI View Article : Google Scholar
|
33
|
Worth CL, Preissner R and Blundell TL: SDM
- a server for predicting effects of mutations on protein stability
and malfunction. Nucleic Acids Res. 39:W215–W222. 2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Buske OJ, Manickaraj A, Mital S, Ray PN
and Brudno M: Identification of deleterious synonymous variants in
human genomes. Bioinformatics. 29:1843–1850. 2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Supek F, Miñana B, Valcárcel J, Gabaldón T
and Lehner B: Synonymous mutations frequently act as driver
mutations in human cancers. Cell. 156:1324–1335. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Gotea V, Gartner JJ, Qutob N, Elnitski L
and Samuels Y: The functional relevance of somatic synonymous
mutations in melanoma and other cancers. Pigment Cell Melanoma Res.
28:673–684. 2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Rodenburg RJ: Mitochondrial complex
I-linked disease. Biochim Biophys Acta. 1857:938–945.
2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Winklhofer KF and Haass C: Mitochondrial
dysfunction in Parkinson's disease. Biochim Biophys Acta.
1802:29–44. 2010. View Article : Google Scholar
|
39
|
Sharma LK, Lu J and Bai Y: Mitochondrial
respiratory complex I: Structure, function and implication in human
diseases. Curr Med Chem. 16:1266–1277. 2009.PubMed/NCBI View Article : Google Scholar
|
40
|
Kumleh HH, Riazi GH, Houshmand M, Sanati
MH, Gharagozli K and Shafa M: Complex I deficiency in Persian
multiple sclerosis patients. J Neurol Sci. 243:65–69.
2006.PubMed/NCBI View Article : Google Scholar
|
41
|
Hirst J: Towards the molecular mechanism
of respiratory complex I. Biochem J. 425:327–339. 2009.PubMed/NCBI View Article : Google Scholar
|
42
|
Lu F, Selak M, O'Connor J, Croul S,
Lorenzana C, Butunoi C and Kalman B: Oxidative damage to
mitochondrial DNA and activity of mitochondrial enzymes in chronic
active lesions of multiple sclerosis. J Neurol Sci. 177:95–103.
2000.PubMed/NCBI View Article : Google Scholar
|
43
|
Taylor RW and Turnbull DM: Mitochondrial
DNA mutations in human disease. Nat Rev Genet. 6:389–402.
2005.PubMed/NCBI View Article : Google Scholar
|
44
|
Hofhaus G and Attardi G: Lack of assembly
of mitochondrial DNA-encoded subunits of respiratory NADH
dehydrogenase and loss of enzyme activity in a human cell mutant
lacking the mitochondrial ND4 gene product. EMBO J. 12:3043–3048.
1993.PubMed/NCBI View Article : Google Scholar
|
45
|
Bai Y and Attardi G: The mtDNA-encoded ND6
subunit of mitochondrial NADH dehydrogenase is essential for the
assembly of the membrane arm and the respiratory function of the
enzyme. EMBO J. 17:4848–4858. 1998.PubMed/NCBI View Article : Google Scholar
|
46
|
Bai Y, Hu P, Park JS, Deng JH, Song X,
Chomyn A, Yagi T and Attardi G: Genetic and functional analysis of
mitochondrial DNA-encoded complex I genes. Ann NY Acad Sci.
1011:272–283. 2004.PubMed/NCBI View Article : Google Scholar
|
47
|
Malfatti E, Bugiani M, Invernizzi F, de
Souza CF, Farina L, Carrara F, Lamantea E, Antozzi C, Confalonieri
P, Sanseverino MT, et al: Novel mutations of ND genes in complex I
deficiency associated with mitochondrial encephalopathy. Brain.
130:1894–1904. 2007.PubMed/NCBI View Article : Google Scholar
|
48
|
Yu X, Koczan D, Sulonen A-M, Akkad DA,
Kroner A, Comabella M, Costa G, Corongiu D, Goertsches R,
Camina-Tato M, et al: mtDNA nt13708A variant increases the risk of
multiple sclerosis. PLos One. 3(e1530)2008.PubMed/NCBI View Article : Google Scholar
|
49
|
Kellar-Wood H, Robertson N, Govan GG,
Compston DA and Harding AE: Leber's hereditary optic neuropathy
mitochondrial DNA mutations in multiple sclerosis. Ann Neurol.
36:109–112. 1994.PubMed/NCBI View Article : Google Scholar
|
50
|
Fauser S, Luberichs J, Besch D and
Leo-Kottler B: Sequence analysis of the complete mitochondrial
genome in patients with Leber's hereditary optic neuropathy lacking
the three most common pathogenic DNA mutations. Biochem Biophys Res
Commun. 295:342–347. 2002.PubMed/NCBI View Article : Google Scholar
|
51
|
Dogulu CF, Kansu T, Seyrantepe V, Ozguc M,
Topaloglu H and Johns DR: Mitochondrial DNA analysis in the Turkish
Leber's hereditary optic neuropathy population. Eye (Lond).
15:183–188. 2001.PubMed/NCBI View Article : Google Scholar
|
52
|
Lodi R, Montagna P, Cortelli P, Iotti S,
Cevoli S, Carelli V and Barbiroli B: ‘Secondary’ 4216/ND1 and
13708/ND5 Leber's hereditary optic neuropathy mitochondrial DNA
mutations do not further impair in vivo mitochondrial oxidative
metabolism when associated with the 11778/ND4 mitochondrial DNA
mutation. Brain. 123:1896–1902. 2000.PubMed/NCBI View Article : Google Scholar
|
53
|
Wong LJ, Liang MH, Kwon H, Park J, Bai RK
and Tan DJ: Comprehensive scanning of the entire mitochondrial
genome for mutations. Clin Chem. 48:1901–1912. 2002.PubMed/NCBI
|
54
|
Rossignol R, Faustin B, Rocher C, Malgat
M, Mazat J, Letellier T and Biochem J: Mitochondrial threshold
effects. Biochem J. 370:751–762. 2003.PubMed/NCBI View Article : Google Scholar
|
55
|
Wallace DC and Chalkia D: Mitochondrial
DNA genetics and the heteroplasmy conundrum in evolution and
disease. Cold Spring Harb Perpect Biol. 5(a021220)2013.PubMed/NCBI View Article : Google Scholar
|
56
|
Li M, Schönberg A, Schaefer M, Schroeder
R, Nasidze I and Stoneking M: Detecting heteroplasmy from
high-throughput sequencing of complete human mitochondrial DNA
genomes. Am J Hum Genet. 87:237–249. 2010.PubMed/NCBI View Article : Google Scholar
|
57
|
Payne BA, Wilson IJ, Yu-Wai-Man P, Coxhead
J, Deehan D, Horvath R, Taylor RW, Samuels DC, Santibanez-Koref M
and Chinnery PF: Universal heteroplasmy of human mitochondrial DNA.
Hum Mol Genet. 22:384–390. 2013.PubMed/NCBI View Article : Google Scholar
|
58
|
Casoli T, Spazzafumo L, Stefano G and
Conti F: Role of diffuse low-level heteroplasmy of mitochondrial
DNA in Alzheimer's disease neurodegeneration. Front Aging Neurosci.
7(142)2015.PubMed/NCBI View Article : Google Scholar
|