1
|
Zvěřová M: Clinical aspects of Alzheimer's
disease. Clin Biochem. 72:3–6. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Arranz AM and De Strooper B: The role of
astroglia in Alzheimer's disease: Pathophysiology and clinical
implications. Lancet Neurol. 18:406–414. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Cheng X, Wu J, Geng M and Xiong J: Role of
synaptic activity in the regulation of amyloid beta levels in
Alzheimer's disease. Neurobiol Aging. 35:1217–1232. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Ballard C, Gauthier S, Corbett A, Brayne
C, Aarsland D and Jones E: Alzheimer's disease. Lancet.
377:1019–1031. 2011.PubMed/NCBI View Article : Google Scholar
|
5
|
Teipel S, Heinsen H, Amaro EJ, Grinberg
LT, Krause B and Grothe M: Alzheimer's disease neuroimaging
initiative. cholinergic basal forebrain atrophy predicts amyloid
burden in Alzheimer's disease. Neurobiol Aging. 35:482–491.
2014.PubMed/NCBI View Article : Google Scholar
|
6
|
McKeever PM, Kim T, Hesketh AR, MacNair L,
Miletic D, Favrin G, Oliver SG, Zhang Z, St George-Hyslop P and
Robertson J: Cholinergic neuron gene expression differences
captured by translational profiling in a mouse model of Alzheimer's
disease. Neurobiol Aging. 57:104–119. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Klaassens BL, van Gerven JMA, Klaassen ES,
van der Grond J and Rombouts S: Cholinergic and serotonergic
modulation of resting state functional brain connectivity in
Alzheimer's disease. NeuroImage. 199:143–152. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Ulep MG, Saraon SK and McLea S: Alzheimer
disease. J Nurse Pract. 14:129–135. 2018.
|
9
|
Ozben T and Ozben S: Neuro-inflammation
and anti-inflammatory treatment options for Alzheimer's disease.
Clin Biochem. 72:87–89. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Morgan AR, Touchard S, Leckey C, O'Hagan
C, Nevado-Holgado AJ, NIMA Consortium, Barkhof F, Bertram L, Blin
O, Bos I, et al: Inflammatory biomarkers in Alzheimer's disease
plasma. Alzheimers Dement. 15:776–787. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Jomova K, Vondrakova D, Lawson M and Valko
M: Metals, oxidative stress and neurodegenerative disorders. Mol
Cell Biochem. 345:91–104. 2010.PubMed/NCBI View Article : Google Scholar
|
12
|
Pena-Bautista C, Baquero M, Vento M and
Chafer-Pericas C: Free radicals in Alzheimer's disease: Lipid
peroxidation biomarkers. Clin Chim Acta. 491:85–90. 2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Lin Z, Gu J, Xiu J, Mi T, Dong J and
Tiwari JK: Traditional chinese medicine for senile dementia. Evid
Based Complement Alternat Med. 2012(692621)2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Shi TX, Li Y and Jiang Y: Isolation of
flavonoids from the aerial parts of Polygala tenuifolia
Willd. and their antioxidant activities. J Chin Pharmaceut Sci.
22:36–39. 2013.
|
15
|
Yang XJ, Zou PP, Tu PF and Jiang Y: HPLC
determination of mangiferin in the leaves of Aquilaria sinensis and
the different aerial parts of Polygala tenuifolia. Chinese J
Pharmaceut Anal. 32:1175–1178. 2012.
|
16
|
Medicine NAoTC: Chinese Materia Medica.
Shanghai Scientific & Technical Publishers, 1999.
|
17
|
Wilms W, Woźniak-Karczewska M, Corvini PF
and Chrzanowski Ł: Nootropic drugs: Methylphenidate, modafinil and
piracetam-population use trends, occurrence in the environment,
ecotoxicity and removal methods-A review. Chemosphere. 233:771–785.
2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Pepeu G and Grazia Giovannini M: The fate
of the brain cholinergic neurons in neurodegenerative diseases.
Brain Res. 1670:173–184. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Krivinko JM, Koppel J, Savonenko A and
Sweet RA: Animal models of psychosis in Alzheimer disease. Am J
Geriatr Psychiatr. 28:1–19. 2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Tao L, Xie J, Wang Y, Wang S, Wu S, Wang Q
and Ding H: Protective effects of aloe-emodin on
scopolamine-induced memory impairment in mice and
H2O2-induced cytotoxicity in PC12 cells.
Bioorg Med Chem Lett. 24:5385–5389. 2014.PubMed/NCBI View Article : Google Scholar
|
21
|
Jeong EJ, Lee KY, Kim SH, Sung SH and Kim
YC: Cognitive-enhancing and antioxidant activities of iridoid
glycosides from Scrophularia buergeriana in scopolamine-treated
mice. Eur J Pharmacol. 588:78–84. 2008.PubMed/NCBI View Article : Google Scholar
|
22
|
Klinkenberg I and Blokland A: The validity
of scopolamine as a pharmacological model for cognitive impairment:
A review of animal behavioral studies. Neurosci Biobehav Rev.
34:1307–1350. 2010.PubMed/NCBI View Article : Google Scholar
|
23
|
Hu W, Feng Z, Xu J, Jiang Z and Feng M:
Brain-derived neurotrophic factor modified human umbilical cord
mesenchymal stem cells-derived cholinergic-like neurons improve
spatial learning and memory ability in Alzheimer's disease rats.
Brain Res. 1710:61–73. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Bekinschtein P, Cammarota M and Medina JH:
BDNF and memory processing. Neuropharmacology. 76:677–683.
2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Tanila H: The role of BDNF in Alzheimer's
disease. Neurobiol Dis. 97:114–118. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Tapia-Arancibia L, Aliaga E, Silhol M and
Arancibia S: New insights into brain BDNF function in normal aging
and Alzheimer disease. Brain Res Rev. 59:201–220. 2008.PubMed/NCBI View Article : Google Scholar
|
27
|
Kinney JW, Bemiller SM, Murtishaw AS,
Leisgang AM, Salazar AM and Lamb BT: Inflammation as a central
mechanism in Alzheimer's disease. Alzheimers Dement. 4:575–590.
2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Subhramanyam CS, Wang C, Hu Q and Dheen
ST: Microglia-mediated neuroinflammation in neurodegenerative
diseases. Semin Cell Dev Biol. 97:112–120. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Hampel H, Vergallo A, Aguilar LF, Benda N,
Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M,
et al: Precision pharmacology for Alzheimer's disease. Pharmacol
Res. 130:331–365. 2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Faria MC, Goncalves GS, Rocha NP, Moraes
EN, Bicalho MA, Gualberto Cintra MT, Jardim de Paula J, José Ravic
de Miranda LF, Clayton de Souza Ferreira A, Teixeira AL, et al:
Increased plasma levels of BDNF and inflammatory markers in
Alzheimer's disease. J Psychiatr Res. 53:166–172. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Schrag M, Mueller C, Zabel M, Crofton A,
Kirsch WM, Ghribi O, Squitti R and Perry G: Oxidative stress in
blood in Alzheimer's disease and mild cognitive impairment: A
meta-analysis. Neurobiol Dis. 59:100–110. 2013.PubMed/NCBI View Article : Google Scholar
|
32
|
Tramutola A, Lanzillotta C, Perluigi M and
Butterfield DA: Oxidative stress, protein modification and
Alzheimer disease. Brain Res Bull. 133:88–96. 2017.PubMed/NCBI View Article : Google Scholar
|
33
|
Jiang T, Sun Q and Chen S: Oxidative
stress: A major pathogenesis and potential therapeutic target of
antioxidative agents in Parkinson's disease and Alzheimer's
disease. Prog Neurobiol. 147:1–19. 2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH
and Zhang Y: Mangiferin: A multipotent natural product preventing
neurodegeneration in Alzheimer's and Parkinson's disease models.
Pharmacol Res. 146(104336)2019.PubMed/NCBI View Article : Google Scholar
|