1
|
Chen W, Lv H, Liu S, Liu B, Zhu Y, Chen X,
Yang G, Liu L, Zhang T, Wang H, et al: National incidence of
traumatic fractures in China: A retrospective survey of 512 187
individuals. Lancet Glob Heal. 5:e807–e817. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Schneider E, Goldhahn J and Burckhardt P:
The challenge: Fracture treatment in osteoporotic bone. Osteoporos
Int. 16:1–2. 2005.PubMed/NCBI View Article : Google Scholar
|
3
|
Holmes D: Non-union bone fracture: A
quicker fix. Nature. 550(S193)2017.PubMed/NCBI View
Article : Google Scholar
|
4
|
Loi F, Córdova LA, Pajarinen J, Lin TH,
Yao Z and Goodman SB: Inflammation, fracture and bone repair. Bone.
86:119–130. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Marsell R and Einhorn TA: The biology of
fracture healing. Injury. 42:551–555. 2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Ono T and Takayanagi H: Osteoimmunology in
bone fracture healing. Curr Osteoporos Rep. 15:367–375.
2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Tsukasaki M and Takayanagi H:
Osteoimmunology: Evolving concepts in bone-immune interactions in
health and disease. Nat Rev Immunol. 19:626–642. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Ono T, Okamoto K, Nakashima T, Nitta T,
Hori S, Iwakura Y and Takayanagi H: IL-17-producing γδ T cells
enhance bone regeneration. Nat Commun. 7(10928)2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Lorenzo J: Interactions between immune and
bone cells: New insights with many remaining questions. J Clin
Invest. 106:749–752. 2000.PubMed/NCBI View
Article : Google Scholar
|
10
|
Vi L, Baht GS, Whetstone H, Ng A, Wei Q,
Poon R, Mylvaganam S, Grynpas M and Alman BA: Macrophages promote
osteoblastic differentiation in-vivo: Implications in fracture
repair and bone homeostasis. J Bone Min Res. 30:1090–1102.
2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Chang MK, Raggatt LJ, Alexander KA,
Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume
DA and Pettit AR: Osteal tissue macrophages are intercalated
throughout human and mouse bone lining tissues and regulate
osteoblast function in vitro and in vivo. J Immunol. 181:1232–1244.
2008.PubMed/NCBI View Article : Google Scholar
|
12
|
Michalski MN and McCauley LK: Macrophages
and skeletal health. Pharmacol Ther. 174:43–54. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Epelman S, Lavine KJ and Randolph GJ:
Origin and functions of tissue macrophages. Immunity. 41:21–35.
2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Alexander KA, Raggatt LJ, Millard S,
Batoon L, Chiu-Ku Wu A, Chang MK, Hume DA and Pettit AR: Resting
and injury-induced inflamed periosteum contain multiple macrophage
subsets that are located at sites of bone growth and regeneration.
Immunol Cell Biol. 95:7–16. 2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Batoon L, Millard SM, Raggatt LJ and
Pettit AR: Osteomacs and bone regeneration. Curr Osteoporos Rep.
15:385–395. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Batoon L, Millard SM, Wullschleger ME,
Preda C, Wu AC, Kaur S, Tseng HW, Hume DA, Levesque JP, Raggatt LJ
and Pettit AR: CD169+ macrophages are critical for
osteoblast maintenance and promote intramembranous and endochondral
ossification during bone repair. Biomaterials. 196:51–66.
2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Alexander KA, Chang MK, Maylin ER, Kohler
T, Müller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ
and Pettit AR: Osteal macrophages promote in vivo intramembranous
bone healing in a mouse tibial injury model. J Bone Min Res.
26:1517–1532. 2011.PubMed/NCBI View
Article : Google Scholar
|
18
|
Liberati A, Altman DG, Tetzlaff J, Mulrow
C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J
and Moher D: The PRISMA statement for reporting systematic reviews
and meta-analyses of studies that evaluate health care
interventions: Explanation and elaboration. J Clin Epidemiol.
62:e1–e34. 2009.PubMed/NCBI View Article : Google Scholar
|
19
|
Hooijmans CR, Rovers MM, De Vries RBM,
Leenaars M, Ritskes-Hoitinga M and Langendam MW: SYRCLE's risk of
bias tool for animal studies. BMC Med Res Methodol.
14(43)2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Stiuso P, Scognamiglio I, Murolo M,
Ferranti P, De Simone C, Rizzo MR, Tuccillo C, Caraglia M,
Loguercio C and Federico A: Serum oxidative stress markers and
lipidomic profile to detect NASH patients responsive to an
antioxidant treatment: A pilot study. Oxid Med Cell Longev.
2014(169216)2014.PubMed/NCBI View Article : Google Scholar
|
21
|
Raggatt LJ, Wullschleger ME, Alexander KA,
Wu AC, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R and
Pettit AR: Fracture healing via periosteal callus formation
requires macrophages for both initiation and progression of early
endochondral ossification. Am J Pathol. 184:3192–3204.
2014.PubMed/NCBI View Article : Google Scholar
|
22
|
Van Rooijen N, Sanders A and Van Den Berg
TK: Apoptosis of macrophages induced by liposome-mediated
intracellular delivery of clodronate and propamidine. J Immunol
Methods. 193:93–99. 1996.PubMed/NCBI View Article : Google Scholar
|
23
|
Arai F, Miyamoto T, Ohneda O, Inada T,
Sudo T, Brasel K, Miyata T, Anderson DM and Suda T: Commitment and
differentiation of osteoclast precursor cells by the sequential
expression of c-Fms and receptor activator of nuclear factor κB
(RANK) receptors. J Exp Med. 190:1741–1754. 1999.PubMed/NCBI View Article : Google Scholar
|
24
|
Mise-Omata S, Alles N, Fukazawa T, Aoki K,
Ohya K, Jimi E, Obata Y and Doi T: NF-κB RELA-deficient bone marrow
macrophages fail to support bone formation and to maintain the
hematopoietic niche after lethal irradiation and stem cell
transplantation. Int Immunol. 26:607–618. 2014.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang Y, Xu J, Ruan YC, Yu MK, O'Laughlin
M, Wise H, Chen D, Tian L, Shi D, Wang J, et al: Implant-derived
magnesium induces local neuronal production of CGRP to improve
bone-fracture healing in rats. Nat Med. 22:1160–1169.
2016.PubMed/NCBI View
Article : Google Scholar
|
26
|
Wintges K, Beil FT, Albers J, Jeschke A,
Schweizer M, Claass B, Tiegs G, Amling M and Schinke T: Impaired
bone formation and increased osteoclastogenesis in mice lacking
chemokine (C-C motif) ligand 5 (Ccl5). J Bone Miner Res.
28:2070–2080. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Schlundt C, El Khassawna T, Serra A,
Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius
R, Hartmann S, et al: Macrophages in bone fracture healing: Their
essential role in endochondral ossification. Bone. 106:78–89.
2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Debnath S, Yallowitz AR, McCormick J,
Lalani S, Zhang T, Xu R, Li N, Liu Y, Yang YS, Eiseman M, et al:
Discovery of a periosteal stem cell mediating intramembranous bone
formation. Nature. 562:133–139. 2018.PubMed/NCBI View Article : Google Scholar
|