Can mesenchymal stem cells be used to treat COVID‑19‑induced pneumonia? (Review)
- Authors:
- İdi̇l Çeti̇n
- Mehmet Topçul
-
Affiliations: Department of Biology, Faculty of Science, Istanbul University, Istanbul 34459, Turkey - Published online on: October 16, 2020 https://doi.org/10.3892/br.2020.1369
- Article Number: 62
This article is mentioned in:
Abstract
Uğraş Dikmen A, Kına HM, Özkan S and İlhan MN: Epidemiology of COVID-19: What we learn from pandemic. J Biotechnol and Strategic Health Res. 1:29–36. 2020. | |
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–33. 2020.PubMed/NCBI View Article : Google Scholar | |
Zumla A, Chan JFW, Azhar EI, Hui DS and Yuen KY: Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov. 15:327–347. 2016.PubMed/NCBI View Article : Google Scholar | |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020.PubMed/NCBI View Article : Google Scholar | |
Wan Y, Shang J, Graham R, Baric RS and Li F: Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol. 94:e00127–20. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020.PubMed/NCBI View Article : Google Scholar | |
Rose-John S: Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol. 10(a028415)2018.PubMed/NCBI View Article : Google Scholar | |
Chen J, Hu C, Che L, Tang L, Zhu Y, Xu X, Chen L, Gao H, Lu X, Yu L, et al: Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection: A hint for COVID-19 treatment. Engineering (Beijing): Feb 28, 2020 (Epub ahead of print). | |
Bennardo F, Buffone C and Giudice A: New therapeutic opportunities for COVID-19 patients with Tocilizumab: Possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws. Oral Oncol. 106(104659)2020.PubMed/NCBI View Article : Google Scholar | |
Rothan HA and Byrareddy SN: The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 109(102433)2020.PubMed/NCBI View Article : Google Scholar | |
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G and van Goor H: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–637. 2004.PubMed/NCBI View Article : Google Scholar | |
Vergano M, Bertolini G, Giannini A, Giuseppe G, Livigni S, Mistraletti G and Petrini F: Raccomandazioni di etica clinica per l'ammissione a trattamenti intensivi e per la loro sospensione, in condizioni eccezionali di squilibrio tra necessità e risorse disponibili. versione 01. SIAARTI, 2020. urihttps://www.siaarti.it/SiteAssets/News/COVID19%20-%20documenti%20SIAARTI/SIAARTI%20-%20Covid19%20-%20Raccomandazioni%20di%20etica%20clinica.pdfsimplehttps://www.siaarti.it/SiteAssets/News/COVID19%20-%20documenti%20SIAARTI/SIAARTI%20-%20Covid19%20-%20Raccomandazioni%20di%20etica%20clinica.pdf. Accessed March 6, 2020. | |
Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S, et al: Transplantation of ACE2 mesenchymal stem cells improves the outcomes of patients with COVID-19 pneumonia. Aging Dis. 11:216–228. 2020.PubMed/NCBI View Article : Google Scholar | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020.PubMed/NCBI View Article : Google Scholar | |
Jaimes JA, Millet JK, Stout AE, Andre NM and Whittaker GR: A tale of two viruses: The distinct spike glycoproteins of feline coronaviruses. Viruses. 12(83)2020.PubMed/NCBI View Article : Google Scholar | |
Wu Z and Mc Googan JM: Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 323:1239–1242. 2020.PubMed/NCBI View Article : Google Scholar | |
Del Rio C and Malani PN: 2019 novel coronavirus-important information for clinicians. JAMA. 323:1039–1040. 2020.PubMed/NCBI View Article : Google Scholar | |
World Health Organization (WHO): WHO Director-General's opening remarks at the media briefing on COVID-19-24 February 2020. urihttps://www.who.int/dg/speeches/detail/who-director-general-s-op-ening-remarks-at-themedia-briefing-on-covid-19-24-february-2020simplehttps://www.who.int/dg/speeches/detail/who-director-general-s-op-ening-remarks-at-themedia-briefing-on-covid-19-24-february-2020. Accessed February 26, 2020. | |
Gattinoni L, Pesenti A, Avalli L, Rossi F and Bombino M: Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis. 136:730–736. 1987.PubMed/NCBI View Article : Google Scholar | |
Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R and Bugedo G: Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 354:1775–1786. 2006.PubMed/NCBI View Article : Google Scholar | |
Maiolo G, Collino F, Vasques F, Rapetti F, Tonetti T, Romitti F, Cressoni M, Chiumello D, Moerer O, Herrmann P, et al: Reclassifying acute respiratory distress syndrome. Am J Respir Crit Care Med. 197:1586–1595. 2018.PubMed/NCBI View Article : Google Scholar | |
Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L and Camporota L: COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 46:1099–1102. 2020.PubMed/NCBI View Article : Google Scholar | |
Behrens EM and Koretzky GA: Review: Cytokine storm syndrome: Looking toward the precision medicine era. Arthritis Rheumatol. 69:1135–1143. 2017.PubMed/NCBI View Article : Google Scholar | |
Us D: Cytokine storm in avian influenza. Mikrobiyol Bul. 42:365–380. 2008.PubMed/NCBI(In Turkish). | |
Mares CA, Ojeda SS, Morris EG, Li Q and Teale JM: Initial delay in the immune response to Francisella tularensis is followed by hypercytokinemia characteristic of severe sepsis and correlating with upregulation and release of damage-associated molecular patterns. Infect Immun. 76:3001–3010. 2008.PubMed/NCBI View Article : Google Scholar | |
de Castro IF, Guzmán-Fulgencio M, García-Alvarezand M and Resino S: First evidence of a pro-inflammatory response to severe infection with influenza virus H1N1. Crit Care. 14(115)2010.PubMed/NCBI View Article : Google Scholar | |
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR and Katze MG: Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 76:16–32. 2012.PubMed/NCBI View Article : Google Scholar | |
Pugin J, Ricou B, Steinberg KP, Suter PM and Martin TR: Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. Am J Respir Crit Care Med. 153:1850–1856. 1996.PubMed/NCBI View Article : Google Scholar | |
Metcalfe SM: Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Discov. 5(1000192)2020.PubMed/NCBI View Article : Google Scholar | |
Williams AE and Chambers RC: The mercurial nature of neutrophils: Still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol. 306:L217–L230. 2014.PubMed/NCBI View Article : Google Scholar | |
Channappanavar R and Perlman S: Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 39:529–539. 2017.PubMed/NCBI View Article : Google Scholar | |
Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP and Kelvin DJ: Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 133:13–19. 2008.PubMed/NCBI View Article : Google Scholar | |
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings of COVID-19 associated with acute espiratory distress syndrome. Lancet Resp Med. 8:420–422. 2020.PubMed/NCBI View Article : Google Scholar | |
Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, Cutz E, Liu M, Keshavjee S, Martin TR, et al: Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 289:2104–2112. 2003.PubMed/NCBI View Article : Google Scholar | |
Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, et al: A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 200:123–135. 2004.PubMed/NCBI View Article : Google Scholar | |
Deng ZL, Sharff KA, Tang N, Song WX, Luo J, Luo X, Chen J, Bennett E, Reid R, Manning D, et al: Regulation of osteogenic differentiation during skeletal development. Front Biosci. 13:2001–2021. 2008.PubMed/NCBI View Article : Google Scholar | |
Friedenstein AJ, Petrakova KV, Kurolesova AI and Frolova GP: Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 6:230–247. 1968.PubMed/NCBI | |
Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Sharff KA, Montag AG, Haydon RC and He TC: Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 25:665–677. 2007.PubMed/NCBI View Article : Google Scholar | |
Entschladen F and Zänker KS (eds): Cell migration: Signalling and mechanisms. Karger, Basel, pp1-6, 2010. | |
Müller I, Kordowich S, Holzwarth C, Isensee G, Lang P, Neunhoeffer F, Dominici M, Greil J and Handgretinger R: Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis. 40:25–32. 2008.PubMed/NCBI View Article : Google Scholar | |
Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G, Monroy R and Kurtzberg J: Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal™) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant. 17:534–541. 2011.PubMed/NCBI View Article : Google Scholar | |
Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S, McGuirk J, Devetten M, Jansen J, Herzig R, Schuster M, et al: Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 15:804–811. 2009.PubMed/NCBI View Article : Google Scholar | |
Wu KH, Chan CK, Tsai C, Chang YH, Sieber M, Chiu TH, Ho M, Peng CT, Wu HP and Huang JL: Effective treatment of severe steroid-resistant acute graft-versus- host disease with umbilical cord-derived mesenchymal stem cells. Transplantation. 91:1412–1416. 2011.PubMed/NCBI View Article : Google Scholar | |
Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, et al: Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet. 371:1579–1586. 2008.PubMed/NCBI View Article : Google Scholar | |
Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, Hua B, Liu B, Ye S, Hu X, et al: Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 62:2467–2475. 2010.PubMed/NCBI View Article : Google Scholar | |
Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D, Mönckeberg G and Figueroa FE: Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus. 19:317–322. 2010.PubMed/NCBI View Article : Google Scholar | |
Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, Minelli A, Alvisi C, Vanoli A, Calliada F, et al: Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. Gut. 60:788–798. 2011.PubMed/NCBI View Article : Google Scholar | |
Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, Kooy-Winkelaar EM, Koning F, Zwaginga JJ, Fidder HH, et al: Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: Results of a phase I study. Gut. 59:1662–1669. 2010.PubMed/NCBI View Article : Google Scholar | |
Mehta P, Mcauley DF, Brown M, Sanchez E, Tattersall RS and Manson JJ: HLH Across Speciality Collaboration, UK. Correspondence COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 2020.PubMed/NCBI View Article : Google Scholar | |
Bari E, Ferrarotti I, Saracino L, Perteghella S, Torre ML and Corsico AG: Mesenchymal stromal cell secretome for severe COVID-19 infections: Premises for the therapeutic use. Cells. 9(924)2020.PubMed/NCBI View Article : Google Scholar | |
Singer NG and Caplan AI: Mesenchymal stem cells: Mechanisms of inflammation. Annu Rev Pathol. 6:457–478. 2011.PubMed/NCBI View Article : Google Scholar | |
Bernardo ME and Fibbe WE: Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell. 13:392–402. 2013.PubMed/NCBI View Article : Google Scholar | |
Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S and Gianni AM: Human bone marrow stromal cells suppress t-lymphocyte proliferation induced by cellular or non- specific mitogenic stimuli. Blood. 99:3838–3843. 2002.PubMed/NCBI View Article : Google Scholar | |
Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E and Dazzi F: Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 101:3722–3729. 2003.PubMed/NCBI View Article : Google Scholar | |
Ghannam S, Pène J, Moquet-Torcy G, Jorgensen C and Yssel H: Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 185:302–312. 2010.PubMed/NCBI View Article : Google Scholar | |
Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A and Pistoia V: Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells. 27:693–702. 2009.PubMed/NCBI View Article : Google Scholar | |
Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V and Uccelli A: Human mesenchymal stem cells modulate B-cell functions. Blood. 107:367–372. 2006.PubMed/NCBI View Article : Google Scholar | |
Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, Ottonello L and Pistoia V: Human mesenchymal stem cells inhibit neutrophil apoptosis: A model for neutrophil preservation in the bone marrow niche. Stem Cells. 26:151–162. 2008.PubMed/NCBI View Article : Google Scholar | |
DelaRosa O, Sánchez-Correa B, Morgado S, Ramírez C, del Río B, Menta R, Lombardo E, Tarazona R and Casado JG: Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killer-mediated lysis. Stem Cells Dev. 21:1333–1343. 2012.PubMed/NCBI View Article : Google Scholar | |
Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, et al: Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 24:386–398. 2006.PubMed/NCBI View Article : Google Scholar | |
Prasanna SJ, Gopalakrishnan D, Shankar SR and Vasandan AB: Proinflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One. 5(e9016)2010.PubMed/NCBI View Article : Google Scholar | |
Frank MH and Sayegh MH: Immunomodulatory functions of mesenchymal stem cells. Lancet. 363:1411–1412. 2004.PubMed/NCBI View Article : Google Scholar | |
Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L and Hofmann T: Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA. 99:8932–8937. 2002.PubMed/NCBI View Article : Google Scholar | |
Koç ON, Day J, Nieder M, Gerson SL, Lazarus HM and Krivit W: Allogeneic mesenchymal stem cell infusion for treatment of meta-chromatic leukodystrophy (MLD) and hurler syndrome (MPS-IH). Bone Marrow Transplant. 30:215–222. 2002.PubMed/NCBI View Article : Google Scholar | |
Le Blanc K: Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 5:485–489. 2003.PubMed/NCBI View Article : Google Scholar | |
Chen C, Zhang XR, Ju ZY and He WF: Advances in the research of mechanism and related immunotherapy on the cytokine storm induced by coronavirus disease 2019. Zhonghua Shao Shang Za Zhi. 36:471–475. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Rawat S, Gupta S and Mohanty S: Mesenchymal stem cells modulate the immune system in developing therapeutic interventions 2019. | |
Abraham A and Krasnodembskaya A: Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Transl Med. 9:28–38. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu AL, Rodriguez LA II, Walker KP III, Mohammadipoor A, Kamucheka RM, Cancio LC, Batchinsky AI and Antebi B: Mesenchymal stem cells reconditioned in their own serum exhibit augmented therapeutic properties in the setting of acute respiratory distress syndrome. Stem Cells Transl Med. 8:1092–1106. 2019.PubMed/NCBI View Article : Google Scholar | |
Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM and Krasnodembskaya AD: Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 196:1275–1286. 2017.PubMed/NCBI View Article : Google Scholar | |
Ji F, Li L, Li Z, Jin Y and Liu W: Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019. Stem Cells Transl Med. 9:813–814. 2020.PubMed/NCBI View Article : Google Scholar | |
Noël D, Djouad F, Bouffi C, Mrugala D and Jorgensen C: Multipotent mesenchymal stromal cells and immune tolerance. Leuk Lymphoma. 48:1283–1289. 2007.PubMed/NCBI View Article : Google Scholar | |
Chen X, Armstrong MA and Li G: Mesenchymal stem cells in immunoregulation. Immunol Cell Biol. 84:413–421. 2006.PubMed/NCBI View Article : Google Scholar | |
Golchin A, Seyedjafari E and Ardeshirylajimi A: Mesenchymal stem cell therapy for COVID-19: Present or future. Stem Cell Rev Rep. 16:427–433. 2020.PubMed/NCBI View Article : Google Scholar |