1
|
Ikebuchi Y, Kanda T, Ikeda H, Yoshida A,
Sakaguchi T, Urabe S, Minami H, Nakao K, Kuwamoto S, Inoue H, et
al: Identification of human herpes virus 1 encoded microRNAs in
biopsy samples of lower esophageal sphincter muscle during peroral
endoscopic myotomy for esophageal achalasia. Dig Endosc.
32:136–142. 2020.PubMed/NCBI View Article : Google Scholar
|
2
|
Kahrilas PJ and Boeckxstaens G: The
spectrum of achalasia: Lessons from studies of pathophysiology and
high-resolution manometry. Gastroenterology. 145:954–965.
2013.PubMed/NCBI View Article : Google Scholar
|
3
|
Minami H, Isomoto H, Miuma S, Kobayashi Y,
Yamaguch N, Urabe S, Matsushima K, Akazawa Y, Ohnita K, Takeshima
F, et al: New endoscopic indicator of esophageal achalasia:
‘Pinstripe pattern’. PLoS One. 10(e0101833)2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Ghoshal UC, Daschakraborty SB and Singh R:
Pathogenesis of achalasia cardia. World J Gastroenterol.
18:3050–3057. 2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Furuzawa-Carballeda J, Torres-Landa S,
Valdovinos MÁ, Coss-Adame E, Martín Del Campo LA and
Torres-Villalobos G: New insights into the pathophysiology of
achalasia and implications for future treatment. World J
Gastroenterol. 22:7892–7907. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Inoue H, Shiwaku H, Iwakiri K, Onimaru M,
Kobayashi Y, Minami H, Sato H, Kitano S, Iwakiri R, Omura N, et al:
Clinical practice guidelines for peroral endoscopic myotomy. Dig
Endosc. 30:563–579. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Isomoto H and Ikebuchi Y: Japanese
guidelines for peroral endoscopic myotomy: 1st edition. Dig Endosc.
31:27–29. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Sato H, Inoue H, Ikeda H, Sato C, Santi
EGR, Phalanusitthepha C, Aoyagi Y and Kudo SE: In vivo
histopathological assessment of the muscularis propria in achalasia
by using endocytoscopy (with video). Endosc Int Open. 2:E178–E182.
2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Bredenoord AJ, Fox M, Kahrilas PJ,
Pandolfino JE, Schwizer W and Smout AJ: International High
Resolution Manometry Working Group. Chicago classification criteria
of esophageal motility disorders defined in high resolution
esophageal pressure topography. Neurogastroenterol Motil. 24 (Suppl
1):57–65. 2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Kahrilas PJ, Bredenoord AJ, Fox M, Gyawali
CP, Roman S, Smout AJ, Pandolfino JE, Bhatia S, Boeckxstaens G, Bor
S, et al: International High Resolution Manometry Working Group:
The Chicago Classification of esophageal motility disorders, v3.0.
Neurogastroenterol Motil. 27:160–174. 2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Nakajima N, Sato H, Takahashi K, Hasegawa
G, Mizuno K, Hashimoto S, Sato Y and Terai S: Muscle layer
histopathology and manometry pattern of primary esophageal motility
disorders including achalasia. Neurogastroenterol Motil. 29:1–8.
2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Pressman A and Behar J: Etiology and
pathogenesis of idiopathic achalasia. J Clin Gastroenterol.
51:195–202. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Furuzawa-Carballeda J, Aguilar-León D,
Gamboa-Domínguez A, Valdovinos MA, Nuñez-Álvarez C,
Martín-del-Campo LA, Enríquez AB, Coss-Adame E, Svarch AE,
Flores-Nájera A, et al: Achalasia - an autoimmune inflammatory
disease: A cross-sectional study. J Immunol Res.
2015(729217)2015.PubMed/NCBI View Article : Google Scholar
|
14
|
Kanda T, Yoshida A, Ikebuchi Y, Ikeda H,
Sakaguchi T, Urabe S, Minami H, Nakao K, Inoue H and Isomoto H:
Autophagy-related 16-like 1 is influenced by human herpes virus
1-encoded microRNAs in biopsy samples from the lower esophageal
sphincter muscle during per-oral endoscopic myotomy for esophageal
achalasia. Biomed Rep. 14(7)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Nile SH, Nile A, Qiu J, Li L, Jia X and
Kai G: COVID-19: Pathogenesis, cytokine storm and therapeutic
potential of interferons. Cytokine Growth Factor Rev. 53:66–70.
2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Rothan HA and Byrareddy SN: The
epidemiology and pathogenesis of coronavirus disease (COVID-19)
outbreak. J Autoimmun. 109(102433)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Japan Esophageal Society. Descriptive
rules for achalasia of the esophagus, June 2012: 4th Edition.
Esophagus. 14:275–289. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Salem ML: Estrogen, a double-edged sword:
Modulation of TH1- and TH2-mediated inflammations by differential
regulation of TH1/TH2 cytokine production. Curr Drug Targets
Inflamm Allergy. 3:97–104. 2004.PubMed/NCBI View Article : Google Scholar
|
20
|
Dardalhon V, Korn T, Kuchroo VK and
Anderson AC: Role of Th1 and Th17 cells in organ-specific
autoimmunity. J Autoimmun. 31:252–256. 2008.PubMed/NCBI View Article : Google Scholar
|
21
|
Facco M, Brun P, Baesso I, Costantini M,
Rizzetto C, Berto A, Baldan N, Palù G, Semenzato G, Castagliuolo I,
et al: T cells in the myenteric plexus of achalasia patients show a
skewed TCR repertoire and react to HSV-1 antigens. Am J
Gastroenterol. 103:1598–1609. 2008.PubMed/NCBI View Article : Google Scholar
|
22
|
Huaux F, Liu T, McGarry B, Ullenbruch M
and Phan SH: Dual roles of IL-4 in lung injury and fibrosis. J
Immunol. 170:2083–2092. 2003.PubMed/NCBI View Article : Google Scholar
|
23
|
Nguyen JK, Austin E, Huang A, Mamalis A
and Jagdeo J: The IL-4/IL-13 axis in skin fibrosis and scarring:
Mechanistic concepts and therapeutic targets. Arch Dermatol Res.
312:81–92. 2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Fajgenbaum DC and June CH: Cytokine storm.
N Engl J Med. 383:2255–2273. 2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Yiu HH, Graham AL and Stengel RF: Dynamics
of a cytokine storm. PLoS One. 7(e45027)2012.PubMed/NCBI View Article : Google Scholar
|
26
|
Wynn TA: Type 2 cytokines: Mechanisms and
therapeutic strategies. Nat Rev Immunol. 15:271–282.
2015.PubMed/NCBI View
Article : Google Scholar
|
27
|
Dinarello CA: Overview of the IL-1 family
in innate inflammation and acquired immunity. Immunol Rev.
281:8–27. 2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhang J-M and An J: Cytokines,
inflammation and pain. Int Anesthesiol Clin. 69:482–489. 2009.
|
29
|
Martin P, Goldstein JD, Mermoud L,
Diaz-Barreiro A and Palmer G: IL-1 family antagonists in mouse and
human Skin inflammation. Front Immunol. 12(652846)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Fry TJ and Mackall CL: The many faces of
IL-7: From lymphopoiesis to peripheral T cell maintenance. J
Immunol. 174:6571–6576. 2005.PubMed/NCBI View Article : Google Scholar
|
31
|
Surh CD and Sprent J: Homeostasis of naive
and memory T cells. Immunity. 29:848–862. 2008.PubMed/NCBI View Article : Google Scholar
|
32
|
Chetoui N, Boisvert M, Gendron S and
Aoudjit F: Interleukin-7 promotes the survival of human
CD4+ effector/memory T cells by up-regulating Bcl-2
proteins and activating the JAK/STAT signalling pathway.
Immunology. 130:418–426. 2010.PubMed/NCBI View Article : Google Scholar
|
33
|
Vignali DA and Kuchroo VK: IL-12 family
cytokines: Immunological playmakers. Nat Immunol. 13:722–728.
2012.PubMed/NCBI View
Article : Google Scholar
|
34
|
Lu X: Impact of IL-12 in Cancer. Curr
Cancer Drug Targets. 17:682–697. 2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Zhang Y, Zhang Y, Gu W and Sun B: TH1/TH2
cell differentiation and molecular signals. Adv Exp Med Biol.
841:15–44. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Seder RA: The role of IL12 in the
regulation of Th1 and Th2 differentiation. Res Immunol.
146:473–476. 1995.PubMed/NCBI View Article : Google Scholar
|
37
|
Kaiko GE, Horvat JC, Beagley KW and
Hansbro PM: Immunological decision-making: How does the immune
system decide to mount a helper T-cell response? Immunology.
123:326–338. 2008.PubMed/NCBI View Article : Google Scholar
|
38
|
Schoenborn JR and Wilson CB: Regulation of
interferon-gamma during innate and adaptive immune responses. Adv
Immunol. 96:41–101. 2007.PubMed/NCBI View Article : Google Scholar
|
39
|
Chaplin DD: Overview of the immune
response. J Allergy Clin Immunol. 125 (Suppl 2):S3–S23.
2010.PubMed/NCBI View Article : Google Scholar
|
40
|
Schroder K, Hertzog PJ, Ravasi T and Hume
DA: Interferon-γ: An overview of signals, mechanisms and functions.
J Leukoc Biol. 75:163–189. 2004.PubMed/NCBI View Article : Google Scholar
|
41
|
Bastos KR, Barboza R, Sardinha L, Russo M,
Alvarez JM and Lima MR: Role of endogenous IFN-γ in macrophage
programming induced by IL-12 and IL-18. J Interferon Cytokine Res.
27:399–410. 2007.PubMed/NCBI View Article : Google Scholar
|
42
|
Bachmann MF and Oxenius A: Interleukin 2:
From immunostimulation to immunoregulation and back again. EMBO
Rep. 8:1142–1148. 2007.PubMed/NCBI View Article : Google Scholar
|
43
|
Ross SH and Cantrell DA: Signaling and
function of interleukin-2 in T lymphocytes. Annu Rev Immunol.
36:411–433. 2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Lipsky PE, Hirohata S, Jelinek DF,
McAnally L and Splawski JB: Regulation of human B lymphocyte
responsiveness. Scand J Rheumatol Suppl. 76 (Suppl 76):229–235.
1988.PubMed/NCBI View Article : Google Scholar
|
45
|
King A, Balaji S, Le LD, Crombleholme TM
and Keswani SG: Regenerative wound healing: The role of
interleukin-10. Adv Wound Care (New Rochelle). 3:315–323.
2014.PubMed/NCBI View Article : Google Scholar
|
46
|
Furuzawa-Carballeda J, Coss-Adame E,
Romero-Hernández F, Zúñiga J, Uribe-Uribe N, Aguilar-León D,
Valdovinos MA, Núñez-Álvarez CA, Hernández-Ramírez DF,
Olivares-Martínez E, et al: Esophagogastric junction outflow
obstruction: Characterization of a new entity? Clinical,
manometric, and neuroimmunological description. Neurogastroenterol
Motil. 32(e13867)2020.PubMed/NCBI View Article : Google Scholar
|
47
|
Chen WF, Liu ZQ, Pu ZN, Xu JQ, Yao L, Wu
XY, Xu XY, Xu JX, Zhu Y, Wang Y, et al: Multiplex immunoassays
reveal increased serum cytokines and chemokines associated with the
subtypes of achalasia. Neurogastroenterol Motil.
32(e13832)2020.PubMed/NCBI View Article : Google Scholar
|
48
|
Clayton S, Cauble E, Kumar A, Patil N,
Ledford D, Kolliputi N, Lopes-Virella MF, Castell D and Richter J:
Plasma levels of TNF-α, IL-6, IFN-γ, IL-12, IL-17, IL-22, and IL-23
in achalasia, eosinophilic esophagitis (EoE), and gastroesophageal
reflux disease (GERD). BMC Gastroenterol. 19(28)2019.PubMed/NCBI View Article : Google Scholar
|