1
|
Ferrara N, Gerber HP and LeCouter J: The
biology of VEGF and its receptors. Nat Med. 9:669–676.
2003.PubMed/NCBI View Article : Google Scholar
|
2
|
Zirlik K and Duyster J: Anti-Angiogenics:
Current situation and future perspectives. Oncol Res Treat.
41:166–171. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Wang Z, Dabrosin C, Yin X, Fuster MM,
Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B,
Ribatti D, et al: Broad targeting of angiogenesis for cancer
prevention and therapy. Semin Cancer Biol. 35 (Suppl 1):S224–S243.
2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Toriu N, Sekine A, Mizuno H, Hasegawa E,
Yamanouchi M, Hiramatsu R, Hayami N, Hoshino J, Kawada M, Suwabe T,
et al: Renal-Limited thrombotic microangiopathy due to bevacizumab
therapy for metastatic colorectal cancer: A case report. Case Rep
Oncol. 12:391–400. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Hayman SR, Leung N, Grande JP and Garovic
VD: VEGF inhibition, hypertension, and renal toxicity. Curr Oncol
Rep. 14:285–294. 2012.PubMed/NCBI View Article : Google Scholar
|
6
|
Izzedine H, Escudier B, Lhomme C, Pautier
P, Rouvier P, Gueutin V, Baumelou A, Derosa L, Bahleda R,
Hollebecque A, et al: Kidney diseases associated with anti-vascular
endothelial growth factor (VEGF): An 8-year observational study at
a single center. Medicine (Baltimore). 93:333–339. 2014.PubMed/NCBI View Article : Google Scholar
|
7
|
Hanna RM, Tran NT, Patel SS, Hou J,
Jhaveri KD, Parikh R, Selamet U, Ghobry L, Wassef O, Barsoum M, et
al: Thrombotic microangiopathy and acute kidney injury induced
after intravitreal injection of vascular endothelial growth factor
inhibitors VEGF blockade-related TMA after intravitreal use. Front
Med (Lausanne). 7(579603)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Piscitani L, Sirolli V, Di Liberato L,
Morroni M and Bonomini M: Nephrotoxicity associated with novel
anticancer agents (Aflibercept, Dasatinib, Nivolumab): Case series
and nephrological considerations. Int J Mol Sci.
21(4878)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Morales E, Moliz C and Gutierrez E: Renal
damage associated to intravitreal administration of ranibizumab.
Nefrologia. 37:653–655. 2017.PubMed/NCBI View Article : Google Scholar : (In English,
Spanish).
|
10
|
Touyz RM, Herrmann SMS and Herrmann J:
Vascular toxicities with VEGF inhibitor therapies-focus on
hypertension and arterial thrombotic events. J Am Soc Hypertens.
12:409–425. 2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Florova B, Rajdl D, Racek J, Fiala O,
Matejka VM and Trefil L: NGAL, albumin and cystatin C during
cisplatin therapy. Physiol Res. 69:307–317. 2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Khawaja S, Jafri L, Siddiqui I, Hashmi M
and Ghani F: The utility of neutrophil gelatinase-associated
Lipocalin (NGAL) as a marker of acute kidney injury (AKI) in
critically ill patients. Biomark Res. 7(4)2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Ghadrdan E, Ebrahimpour S, Sadighi S,
Chaibakhsh S and Jahangard-Rafsanjani Z: Evaluation of urinary
neutrophil gelatinase-associated lipocalin and urinary kidney
injury molecule-1 as biomarkers of renal function in cancer
patients treated with cisplatin. J Oncol Pharm Pract. 26:1643–1649.
2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Tekce BK, Uyeturk U, Tekce H, Uyeturk U,
Aktas G and Akkaya A: Does the kidney injury molecule-1 predict
cisplatin-induced kidney injury in early stage? Ann Clin Biochem.
52:88–94. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Cassidy H, Slyne J, Higgins M, Radford R,
Conlon PJ, Watson AJ, Ryan MP, McMorrow T and Slattery C:
Neutrophil gelatinase-associated lipocalin (NGAL) is localised to
the primary cilium in renal tubular epithelial cells-A novel source
of urinary biomarkers of renal injury. Biochim Biophys Acta Mol
Basis Dis. 1865(165532)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Mishra J, Mori K, Ma Q, Kelly C, Barasch J
and Devarajan P: Neutrophil gelatinase-associated lipocalin: A
novel urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol.
24:307–315. 2004.PubMed/NCBI View Article : Google Scholar
|
17
|
Wagener G, Gubitosa G, Wang S, Borregaard
N, Kim M and Lee HT: Urinary neutrophil gelatinase-associated
lipocalin and acute kidney injury after cardiac surgery. Am J
Kidney Dis. 52:425–433. 2008.PubMed/NCBI View Article : Google Scholar
|
18
|
Han M, Li Y, Wen D, Liu M, Ma Y and Cong
B: NGAL protects against endotoxin-induced renal tubular cell
damage by suppressing apoptosis. BMC Nephrol.
19(168)2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Castillo-Rodriguez E, Fernandez-Prado R,
Martin-Cleary C, Pizarro-Sánchez MS, Sanchez-Niño MD, Sanz AB,
Fernandez-Fernandez B and Ortiz A: Kidney injury marker 1 and
neutrophil gelatinase-associated lipocalin in chronic kidney
disease. Nephron. 136:263–267. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Ichimura T, Brooks CR and Bonventre JV:
Kim-1/Tim-1 and immune cells: Shifting sands. Kidney Int.
81:809–811. 2012.PubMed/NCBI View Article : Google Scholar
|
21
|
Вailly V, Zhang Z, Meier W, Cate R,
Sanicola M and Bonventre JV: Shedding of kidney injury molecule-1,
a putative adhesion protein involved in renal regeneration. J Biol
Chem. 277:39739–39748. 2002.PubMed/NCBI View Article : Google Scholar
|
22
|
Vaidya VS, Ford GM, Waikar SS, Wang Y,
Clement MB, Ramirez V, Glaab WE, Troth SP, Sistare FD, Prozialeck
WC, et al: A rapid urine test for early detection of kidney injury.
Kidney Int. 76:108–114. 2009.PubMed/NCBI View Article : Google Scholar
|
23
|
Kramer AB, van Timmeren MM, Schuurs TA,
Vaidya VS, Bonventre JV, van Goor H and Navis G: Reduction of
proteinuria in adriamycin-induced nephropathy is associated with
reduction of renal kidney injury molecule (KIM-1) over time. Am J
Physiol Renal Physiol. 296:F1136–F1145. 2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Van Timmeren MM, van den Heuvel MC, Bailly
V, Bakker SJ, van Goor H and Stegeman CA: Tubular kidney injury
molecule-1 (KIM-1) in human renal disease. J Pathol. 212:209–217.
2007.PubMed/NCBI View Article : Google Scholar
|
25
|
Bonventre JV: Kidney injury molecule-1
(KIM-1): A urinary biomarker and much more. Nephrol Dial
Transplant. 24:3265–3268. 2009.PubMed/NCBI View Article : Google Scholar
|
26
|
World Medical Association. World Medical
Association Declaration of Helsinki: Ethical principles for medical
research involving human subjects. JAMA. 310(20):2191–2194.
2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Andrassy KM: Comment on KDIGO 2012
Clinical Practice Guideline for the Evaluation and Management of
Chronic Kidney Disease. Kidney Int. 84:622–623. 2013.PubMed/NCBI View Article : Google Scholar
|
28
|
KDIGO-Clinical Practice Guideline for
Acute Kidney Injury. Kidney International. 2012, Supplement 1.
Available from: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf.
|
29
|
Arnold D, Fuchs CS, Tabernero J, Ohtsu A,
Zhu AX, Garon EB, Mackey JR, Paz-Ares L, Baron AD, Okusaka T, et
al: Meta-analysis of individual patient safety data from six
randomized, placebo-controlled trials with the antiangiogenic
VEGFR2-binding monoclonal antibody ramucirumab. Ann Oncol.
28:2932–2942. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Qi WX, Shen Z, Tang LN and Yao Y: Risk of
hypertension in cancer patients treated with aflibercept: A
systematic review and meta-analysis. Clin Drug Investig.
34:231–240. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Vaidya VS, Ozer JS, Dieterle F, Collings
FB, Ramirez V, Troth S, Muniappa N, Thudium D, Gerhold D, Holder
DJ, et al: Kidney injury molecule-1 outperforms traditional
biomarkers of kidney injury in multi-site preclinical biomarker
qualification studies. Nat Biotechnol. 28:478–485. 2010.PubMed/NCBI View
Article : Google Scholar
|
32
|
Mourad JJ, des Guetz G, Debbabi H and Levy
BI: Blood pressure rise following angiogenesis inhibition by
bevacizumab. A crucial role for microcirculation. Ann Oncol.
19:927–934. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Horowitz JR, Rivard A, van der Zee R,
Hariawala M, Sheriff DD, Esakof DD, Chaudhry GM, Symes JF and Isner
JM: Vascular endothelial growth factor/vascular permeability factor
produces nitric oxide-dependent hypotension. Evidence for a
maintenance role in quiescent adult endothelium. Arterioscler
Thromb Vasc Biol. 17:2793–2800. 1997.PubMed/NCBI View Article : Google Scholar
|
34
|
Steeghs N, Hovens MM, Rabelink AJ, Op 't
Roodt J, Matthys A, Christensen O and Gelderblom H: VEGFR2 blockade
in patients with solid tumors: Mechanism of hypertension and
effects on vascular function. J Clin Oncol. 24 (Suppl
18)(S3037)2006.
|
35
|
Bollée G, Patey N, Cazajous G, Robert C,
Goujon JM, Fakhouri F, Bruneval P, Noël LH and Knebelmann B:
Thrombotic microangiopathy secondary to VEGF pathway inhibition by
sunitinib. Nephrol Dial Transplant. 24:682–685. 2009.PubMed/NCBI View Article : Google Scholar
|
36
|
Izzedine H, Brocheriou I, Deray G and Rixe
O: Thrombotic microangiopathy and anti-VEGF agents. Nephrol Dial
Transplant. 22:1481–1482. 2007.PubMed/NCBI View Article : Google Scholar
|
37
|
Estrada CC, Maldonado A and Mallipattu SK:
Therapeutic inhibition of VEGF signaling and associated
nephrotoxicities. J Am Soc Nephrol. 30:187–200. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Niu G and Chen X: Vascular endothelial
growth factor as an anti-angiogenic target for cancer therapy. Curr
Drug Targets. 11:1000–1017. 2010.PubMed/NCBI View Article : Google Scholar
|
39
|
Fujii T, Kawaasoe K, Tonooka A, Ohta A and
Nitta K: Nephrotic syndrome associated with ramucirumab therapy. A
single-center case series and literature review. Medicine
(Baltimore). 98(e16236)2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Shu S, Wang Y, Zheng M, Liu Z, Cai J, Tang
C and Dong Z: Hypoxia and hypoxia-inducible factors in kidney
injury and repair. Cells. 8(207)2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Ma C, Wei J, Zhan F, Wang R, Fu K, Wan X
and Li Z: Urinary hypoxia-inducible factor-1alpha levels are
associated with histologic chronicity changes and renal function in
patients with lupus nephritis. Yonsei Med J. 53:587–592.
2012.PubMed/NCBI View Article : Google Scholar
|
42
|
Liu J, Wei Q, Guo C, Dong G, Liu Y, Tang C
and Dong Z: Hypoxia, HIF, and associated signaling networks in
chronic kidney disease. Int J Mol Sci. 18(950)2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Haase VH: Hypoxia-inducible factors in the
kidney. Am J Physiol Renal Physiol. 291:F271–F281. 2006.PubMed/NCBI View Article : Google Scholar
|
44
|
Rosenberger C, Mandriota S, Jurgensen JS,
Wiesener MS, Hörstrup JH, Frei U, Ratcliffe PJ, Maxwell PH,
Bachmann S and Eckardt KU: Expression of hypoxia-inducible
factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am
Soc Nephrol. 13:1721–1732. 2002.PubMed/NCBI View Article : Google Scholar
|
45
|
Hung TW, Liou JH, Yeh KT, Tsai JP, Wu SW,
Tai HC, Kao WT, Lin SH, Cheng YW and Chang HR: Renal expression of
hypoxia inducible factor-1α in patients with chronic kidney
disease: A clinicopathologic study from nephrectomized kidneys.
Indian J Med Res. 137:102–110. 2013.PubMed/NCBI
|
46
|
Conde E, Alegre L, Blanco-Sánchez I,
Sáenz-Morales D, Aguado-Fraile E, Ponte B, Ramos E, Sáiz A, Jiménez
C, Ordoñez A, et al: Hypoxia inducible factor 1-Alpha (HIF-1 Alpha)
is induced during reperfusion after renal ischemia and is critical
for proximal tubule cell survival. PLoS One.
7(e33258)2012.PubMed/NCBI View Article : Google Scholar
|
47
|
Weidemann A, Bernhardt WM, Klanke B,
Daniel C, Buchholz B, Câmpean V, Amann K, Warnecke C, Wiesener MS,
Eckardt KU and Willam C: HIF activation protects from acute kidney
injury. J Am Soc Nephrol. 19:486–494. 2008.PubMed/NCBI View Article : Google Scholar
|
48
|
Bernhardt WM, Gottmann U, Doyon F,
Buchholz B, Campean V, Schödel J, Reisenbuechler A, Klaus S, Arend
M, Flippin L, et al: Donor treatment with a PHD-inhibitor
activating HIFs prevents graft injury and prolongs survival in an
allogenic kidney transplant model. Proc Natl Acad Sci USA.
106:21276–21281. 2009.PubMed/NCBI View Article : Google Scholar
|
49
|
Higgins DF, Biju MP, Akai Y, Wutz A,
Johnson RS and Haase VH: Hypoxic induction of Ctgf is directly
mediated by Hif-1. Am J Physiol Renal Physiol. 287:F1223–F1232.
2004.PubMed/NCBI View Article : Google Scholar
|
50
|
Kimura K, Iwano M, Higgins DF, Yamaguchi
Y, Nakatani K, Harada K, Kubo A, Akai Y, Rankin EB, Neilson EG, et
al: Stable expression of HIF-1alfa in tubular epithelial cells
promotesinterstitial fibrosis. Am J Physiol Renal Physiol.
295:F1023–F1029. 2008.PubMed/NCBI View Article : Google Scholar
|
51
|
Kietzmann T, Roth U and Jungermann K:
Induction of the plasminogen activator inhibitor-1 gene expression
by mild hypoxia via a hypoxia response element binding the
hypoxia-inducible factor-1 in rat hepatocytes. Blood. 94:4177–4185.
1999.PubMed/NCBI
|
52
|
Norman JT, Clark IM and Garcia PL: Hypoxia
promotes fibrogenesis in human renal fibroblasts. Kidney Int.
58:2351–2366. 2000.PubMed/NCBI View Article : Google Scholar
|
53
|
Haase VH: The VHL/HIF oxygen-sensing
pathway and its relevance to kidney disease. Kidney Int.
69:1302–1307. 2006.PubMed/NCBI View Article : Google Scholar
|
54
|
Kairaitis LK, Wang Y, Gassmann M, Tay YC
and Harris DC: HIF-1alpha expression follows microvascular loss in
advanced murine adriamycin nephrosis. Am J Physiol Renal Physiol.
288:F198–F206. 2005.PubMed/NCBI View Article : Google Scholar
|
55
|
Tanaka T, Matsumoto M, Inagi R, Miyata T,
Kojima I, Ohse T, Fujita T and Nangaku M: Induction of protective
genes by cobalt ameliorates tubulointerstitial injury in the
progressive Thy1 nephritis. Kidney Int. 68:2714–2725.
2005.PubMed/NCBI View Article : Google Scholar
|
56
|
Hauser PV, Collino F, Bussolati B and
Camussi G: Nephrin and endothelial injury. Curr Opin Nephrol
Hypertens. 18:3–8. 2009.PubMed/NCBI View Article : Google Scholar
|
57
|
Patrakka J and Tryggvason K: Nephrin-a
unique structural and signaling protein of the kidney filter.
Trends Mol Med. 13:396–403. 2007.PubMed/NCBI View Article : Google Scholar
|
58
|
Azad NS, Posadas EM, Kwitkowski VE,
Steinberg SM, Jain L, Annunziata CM, Minasian L, Sarosy G, Kotz HL,
Premkumar A, et al: Combination targeted therapy with sorafenib and
bevacizumab results in enhanced toxicity and antitumor activity. J
Clin Oncol. 26:3709–3714. 2008.PubMed/NCBI View Article : Google Scholar
|
59
|
Feldman DR, Baum MS, Ginsberg MS, Hassoun
H, Flombaum CD, Velasco S, Fischer P, Ronnen E, Ishill N, Patil S
and Motzer RJ: Phase I trial of bevacizumab plus escalated doses of
sunitinib in patients with metastatic renal cell carcinoma. J Clin
Oncol. 27:1432–1439. 2009.PubMed/NCBI View Article : Google Scholar
|