1
|
Reriani MK, Flammer AJ, Jama A, Lerman LO
and Lerman A: Novel functional risk factors for the prediction of
cardiovascular events in vulnerable patients following acute
coronary syndrome. Circ J. 76:778–783. 2012.PubMed/NCBI View Article : Google Scholar
|
2
|
el-Tamimi H, Mansour M, Wargovich TJ, Hill
JA, Kerensky RA, Conti CR and Pepine CJ: Constrictor and dilator
responses to intracoronary acetylcholine in adjacent segments of
the same coronary artery in patients with coronary artery disease.
Endothelial function revisited. Circulation. 89:45–51.
1994.PubMed/NCBI View Article : Google Scholar
|
3
|
Huang PH, Leu HB, Chen JW, Wu TC, Lu TM,
Yu-An Ding P and Lin SJ: Decreased heparin cofactor II activity is
associated with impaired endothelial function determined by
brachial ultrasonography and predicts cardiovascular events. Int J
Cardiol. 114:152–158. 2007.PubMed/NCBI View Article : Google Scholar
|
4
|
Martin BJ and Anderson TJ: Risk prediction
in cardiovascular disease: The prognostic significance of
endothelial dysfunction. Can J Cardiol. 25 (Suppl A):15A–20A.
2009.PubMed/NCBI View Article : Google Scholar
|
5
|
Li H, Horke S and Förstermann U: Vascular
oxidative stress, nitric oxide and atherosclerosis.
Atherosclerosis. 237:208–219. 2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Tousoulis D, Kampoli AM, Tentolouris C,
Papageorgiou N and Stefanadis C: The role of nitric oxide on
endothelial function. Curr Vasc Pharmacol. 10:4–18. 2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Sogo N, Magid KS, Shaw CA, Webb DJ and
Megson IL: Inhibition of human platelet aggregation by nitric oxide
donor drugs: relative contribution of cGMP-independent mechanisms.
Biochem Biophys Res Commun. 279:412–419. 2000.PubMed/NCBI View Article : Google Scholar
|
8
|
Miyauchi T and Masaki T: Pathophysiology
of endothelin in the cardiovascular system. Annu Rev Physiol.
61:391–415. 1999.PubMed/NCBI View Article : Google Scholar
|
9
|
Lüscher TF and Barton M: Endothelins and
endothelin receptor antagonists: Therapeutic considerations for a
novel class of cardiovascular drugs. Circulation. 102:2434–2440.
2000.PubMed/NCBI View Article : Google Scholar
|
10
|
Ross R: Atherosclerosis-an inflammatory
disease. N Engl J Med. 340:115–126. 1999.PubMed/NCBI View Article : Google Scholar
|
11
|
Rajendran P, Rengarajan T, Thangavel J,
Nishigaki Y, Sakthisekaran D, Sethi G and Nishigaki I: The vascular
endothelium and human diseases. Int J Biol Sci. 9:1057–1069.
2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Cone J, Wang S, Tandon N, Fong M, Sun B,
Sakurai K, Yoshitake M, Kambayashi J and Liu Y: Comparison of the
effects of cilostazol and milrinone on intracellular cAMP levels
and cellular function in platelets and cardiac cells. J Cardiovasc
Pharmacol. 34:497–504. 1999.PubMed/NCBI View Article : Google Scholar
|
13
|
Guerra E, Byrne RA and Kastrati A:
Pharmacological inhibition of coronary restenosis: Systemic and
local approaches. Expert Opin Pharmacother. 15:2155–2171.
2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Jang JS, Jin HY, Seo JS, Yang TH, Kim DK,
Kim DS, Kim DK, Seol SH, Kim DI, Cho KI, et al: A meta-analysis of
randomized controlled trials appraising the efficacy and safety of
cilostazol after coronary artery stent implantation. Cardiology.
122:133–143. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Hashimoto A, Miyakoda G, Hirose Y and Mori
T: Activation of endothelial nitric oxide synthase by cilostazol
via a cAMP/protein kinase A- and phosphatidylinositol
3-kinase/Akt-dependent mechanism. Atherosclerosis. 189:350–357.
2006.PubMed/NCBI View Article : Google Scholar
|
16
|
Ito H, Hashimoto A, Matsumoto Y, Yao H and
Miyakoda G: Cilostazol, a phosphodiesterase inhibitor, attenuates
photothrombotic focal ischemic brain injury in hypertensive rats. J
Cereb Blood Flow Metab. 30:343–351. 2010.PubMed/NCBI View Article : Google Scholar
|
17
|
Bai Y, Muqier Murakami H, Iwasa M, Sumi S,
Yamada Y, Ushikoshi H, Aoyama T, Nishigaki K, Takemura G, et al:
Cilostazol protects the heart against ischaemia reperfusion injury
in a rabbit model of myocardial infarction: focus on adenosine,
nitric oxide and mitochondrial ATP-sensitive potassium channels.
Clin Exp Pharmacol Physiol. 38:658–665. 2011.PubMed/NCBI View Article : Google Scholar
|
18
|
Pelletier S, Dubé J, Villeneuve A, Gobeil
F Jr, Bernier SG, Battistini B, Guillemette G and Sirois P:
Adenosine induces cyclic-AMP formation and inhibits endothelin-1
production/secretion in guinea-pig tracheal epithelial cells
through A(2B) adenosine receptors. Br J Pharmacol. 129:243–250.
2000.PubMed/NCBI View Article : Google Scholar
|
19
|
Shima A, Maki T, Mimura N, Yamashita H,
Emoto N, Yoshifuji H and Takahashi R: A case of reversible cerebral
vasoconstriction syndrome associated with anti-phospholipid
antibody syndrome and systemic lupus erythematosus.
eNeurologicalSci. 24(100351)2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Armstead WM, Bohman LE, Riley J, Yarovoi
S, Higazi AA and Cines DB: tPA-S(481)A prevents impairment of
cerebrovascular autoregulation by endogenous tPA after traumatic
brain injury by upregulating p38 MAPK and inhibiting ET-1. J
Neurotrauma. 30:1898–1907. 2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Jiang Y, Zeng Y, Huang X, Qin Y, Luo W,
Xiang S, Sooranna SR and Pinhu L: Nur77 attenuates endothelin-1
expression via downregulation of NF-κB and p38 MAPK in A549 cells
and in an ARDS rat model. Am J Physiol Lung Cell Mol Physiol.
311:L1023–Ll035. 2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Solone X, Wells B and Chrestensen C: MAP
kinases mediate regulation of eNOS through phosphorylation of
different sites. Biochem Mol Biol. 33(S1)(478.10)2019.
|
23
|
Lee KM, Lee HJ, Kim MK, Kim HS, Jung GS,
Hur SH, Kim HT, Cho WH, Kim JG, Kim BW, et al: Cilostazol inhibits
high glucose- and angiotensin II-induced type 1 plasminogen
activator inhibitor expression in artery wall and neointimal region
after vascular injury. Atherosclerosis. 207:391–398.
2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Lim JH, Woo JS and Shin YW: Cilostazol
protects endothelial cells against lipopolysaccharide-induced
apoptosis through ERK1/2- and P38 MAPK-dependent pathways. Korean J
Intern Med. 24:113–122. 2009.PubMed/NCBI View Article : Google Scholar
|
25
|
Chao TH, Tseng SY, Li YH, Liu PY, Cho CL,
Shi GY, Wu HL and Chen JH: A novel vasculo-angiogenic effect of
cilostazol mediated by cross-talk between multiple signalling
pathways including the ERK/p38 MAPK signalling transduction
cascade. Clin Sci (Lond). 123:147–159. 2012.PubMed/NCBI View Article : Google Scholar
|
26
|
Medina-Leyte DJ, Domínguez-Pérez M,
Mercado I, Villarreal-Molina MT and Jacobo-Albavera L: Use of human
umbilical vein endothelial cells (HUVEC) as a model to study
cardiovascular disease: A review. Appl Sci. 10(938)2020.
|
27
|
Xiong T, Zhang Z, Zheng R, Huang J and Guo
L: N-acetyl cysteine inhibits lipopolysaccharide-induced apoptosis
of human umbilical vein endothelial cells via the p38MAPK signaling
pathway. Mol Med Rep. 20:2945–2953. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Cho HY, Park CM, Kim MJ, Chinzorig R, Cho
CW and Song YS: Comparative effect of genistein and daidzein on the
expression of MCP-1, eNOS, and cell adhesion molecules in
TNF-α-stimulated HUVECs. Nutr Res Pract. 5:381–388. 2011.PubMed/NCBI View Article : Google Scholar
|
29
|
Kong LJ, Liu XQ, Xue Y, Gao W and Lv QZ:
Muramyl dipeptide induces reactive oxygen species generation
through the NOD2/COX-2/NOX4 signaling pathway in human umbilical
vein endothelial cells. J Cardiovasc Pharmacol. 71:352–358.
2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Halcox JP, Schenke WH, Zalos G, Mincemoyer
R, Prasad A, Waclawiw MA, Nour KR and Quyyumi AA: Prognostic value
of coronary vascular endothelial dysfunction. Circulation.
106:653–658. 2002.PubMed/NCBI View Article : Google Scholar
|
31
|
Widlansky ME, Gokce N, Keaney JF Jr and
Vita JA: The clinical implications of endothelial dysfunction. J Am
Coll Cardiol. 42:1149–1160. 2003.PubMed/NCBI View Article : Google Scholar
|
32
|
Bonetti PO, Lerman LO and Lerman A:
Endothelial dysfunction: A marker of atherosclerotic risk.
Arterioscler Thromb Vasc Biol. 23:168–175. 2003.PubMed/NCBI View Article : Google Scholar
|
33
|
Chua BH, Chua CC, Diglio CA and Siu BB:
Regulation of endothelin-1 mRNA by angiotensin II in rat heart
endothelial cells. Biochim Biophys Acta. 1178:201–206.
1993.PubMed/NCBI View Article : Google Scholar
|
34
|
Madden JA: Role of the vascular
endothelium and plaque in acute ischemic stroke. Neurology. 79
(Suppl 1):S58–S62. 2012.PubMed/NCBI View Article : Google Scholar
|
35
|
Goto S: Cilostazol: Potential mechanism of
action for antithrombotic effects accompanied by a low rate of
bleeding. Atheroscler. (Suppl 6):3–11. 2005.PubMed/NCBI View Article : Google Scholar
|
36
|
Kim KY, Shin HK, Choi JM and Hong KW:
Inhibition of lipopolysaccharide-induced apoptosis by cilostazol in
human umbilical vein endothelial cells. J Pharmacol Exp Ther.
300:709–715. 2002.PubMed/NCBI View Article : Google Scholar
|
37
|
Kawanabe Y, Takahashi M, Jin X,
Abdul-Majeed S, Nauli AM, Sari Y and Nauli SM: Cilostazol prevents
endothelin-induced smooth muscle constriction and proliferation.
PLoS One. 7(e44476)2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Hohlfeld T, Klemm P, Thiemermann C, Warner
TD, Schrör K and Vane JR: The contribution of tumour necrosis
factor-alpha and endothelin-1 to the increase of coronary
resistance in hearts from rats treated with endotoxin. Br J
Pharmacol. 116:3309–3315. 1995.PubMed/NCBI View Article : Google Scholar
|
39
|
Zhang H, Park Y, Wu J, Chen Xp, Lee S,
Yang J, Dellsperger KC and Zhang C: Role of TNF-alpha in vascular
dysfunction. Clin Sci (Lond). 116:219–230. 2009.PubMed/NCBI View Article : Google Scholar
|