Open Access

A multiple comorbidities mouse lung infection model in ApoE‑deficient mice

  • Authors:
    • Benjamin Bartlett
    • Silvia Lee
    • Herbert P. Ludewick
    • Teck Siew
    • Shipra Verma
    • Grant Waterer
    • Vicente F. Corrales-Medina
    • Girish Dwivedi
  • View Affiliations

  • Published online on: February 6, 2023     https://doi.org/10.3892/br.2023.1603
  • Article Number: 21
  • Copyright: © Bartlett et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Acute pneumonia is characterised by a period of intense inflammation. Inflammation is now considered to be a key step in atherosclerosis progression. In addition, pre‑existing atherosclerotic inflammation is considered to play a role in pneumonia progression and risk. In the present study, a multiple comorbidities murine model was used to study respiratory and systemic inflammation that results from pneumonia in the setting of atherosclerosis. Firstly, a minimal infectious dose of Streptococcus pneumoniae (TIGR4 strain) to produce clinical pneumonia with a low mortality rate (20%) was established. C57Bl/6 ApoE‑/‑ mice were fed a high‑fat diet prior to administering intranasally 105 colony forming units of TIGR4 or phosphate‑buffered saline (PBS). At days 2, 7 and 28 post inoculation (PI), the lungs of mice were imaged by magnetic resonance imaging (MRI) and positron emission tomography (PET). Mice were euthanised and investigated for changes in lung morphology and changes in systemic inflammation using ELISA, Luminex assay and real‑time PCR. TIGR4‑inoculated mice presented with varying degrees of lung infiltrate, pleural effusion and consolidation on MRI at all time points up to 28 days PI. Moreover, PET scans identified significantly higher FDG uptake in the lungs of TIGR4‑inoculated mice up to 28 days PI. The majority (90%) TIGR4‑inoculated mice developed pneumococcal‑specific IgG antibody response at 28 days PI. Consistent with these observations, TIGR4‑inoculated mice displayed significantly increased inflammatory gene expression [interleukin (IL)‑1β and IL‑6] in the lungs and significantly increased levels of circulating inflammatory protein (CCL3) at 7 and 28 days PI respectively. The mouse model developed by the authors presents a discovery tool to understand the link between inflammation related to acute infection such as pneumonia and increased risk of cardiovascular disease observed in humans.
View Figures
View References

Related Articles

Journal Cover

March-2023
Volume 18 Issue 3

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Bartlett B, Lee S, Ludewick HP, Siew T, Verma S, Waterer G, Corrales-Medina VF and Dwivedi G: A multiple comorbidities mouse lung infection model in <em>ApoE</em>‑deficient mice. Biomed Rep 18: 21, 2023
APA
Bartlett, B., Lee, S., Ludewick, H.P., Siew, T., Verma, S., Waterer, G. ... Dwivedi, G. (2023). A multiple comorbidities mouse lung infection model in <em>ApoE</em>‑deficient mice. Biomedical Reports, 18, 21. https://doi.org/10.3892/br.2023.1603
MLA
Bartlett, B., Lee, S., Ludewick, H. P., Siew, T., Verma, S., Waterer, G., Corrales-Medina, V. F., Dwivedi, G."A multiple comorbidities mouse lung infection model in <em>ApoE</em>‑deficient mice". Biomedical Reports 18.3 (2023): 21.
Chicago
Bartlett, B., Lee, S., Ludewick, H. P., Siew, T., Verma, S., Waterer, G., Corrales-Medina, V. F., Dwivedi, G."A multiple comorbidities mouse lung infection model in <em>ApoE</em>‑deficient mice". Biomedical Reports 18, no. 3 (2023): 21. https://doi.org/10.3892/br.2023.1603