1
|
Gebreyohannes EA, Bhagavathula AS, Abebe
TB, Seid MA and Haile KT: In-Hospital mortality among ischemic
stroke patients in Gondar University Hospital: A retrospective
cohort study. Stroke Res Treat. 2019(7275063)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Rochmah TN, Rahmawati IT, Dahlui M,
Budiarto W and Bilqis N: Economic burden of stroke disease: A
systematic review. Int J Environ Res Public Health.
18(7552)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Fantini S, Sassaroli A, Tgavalekos KT and
Kornbluth J: Cerebral blood flow and autoregulation: current
measurement techniques and prospects for noninvasive optical
methods. Neurophotonics. 3(031411)2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Jaffer H, Morris VB, Stewart D and
Labhasetwar V: Advances in stroke therapy. Drug Deliv Transl Res.
1:409–419. 2011.PubMed/NCBI View Article : Google Scholar
|
5
|
Davis SM and Pennypacker KR: Targeting
antioxidant enzyme expression as a therapeutic strategy for
ischemic stroke. Neurochem Int. 107:23–32. 2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Jittiwat J, Suksamrarn A, Tocharus C and
Tocharus J: Dihydrocapsaicin effectively mitigates cerebral
ischemia-induced pathological changes in vivo, partly via
antioxidant and anti-apoptotic pathways. Life Sci.
283(119842)2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Jittiwat J, Chonpathompikunlert P and
Sukketsiri W: Neuroprotective effects of Apium graveolens
against focal cerebral ischemia occur partly via antioxidant,
anti-inflammatory, and anti-apoptotic pathways. J Sci Food Agric.
101:2256–2263. 2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z
and Gu L: Targeting oxidative stress and inflammation to prevent
ischemia-reperfusion injury. Front Mol Neurosci.
13(28)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Vidale S, Consoli A, Arnaboldi M and
Consoli D: Postischemic Inflammation in Acute Stroke. J Clin
Neurol. 13:1–9. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Kawabori M and Yenari MA: Inflammatory
responses in brain ischemia. Curr Med Chem. 22:1258–1277.
2015.PubMed/NCBI View Article : Google Scholar
|
11
|
Jin R, Yang G and Li G: Inflammatory
mechanisms in ischemic stroke: Role of inflammatory cells. J Leukoc
Biol. 87:779–789. 2010.PubMed/NCBI View Article : Google Scholar
|
12
|
Fathali N, Ostrowski RP, Lekic T, Jadhav
V, Tong W, Tang J and Zhang JH: Cyclooxygenase-2 inhibition
provides lasting protection against neonatal hypoxic-ischemic brain
injury. Crit Care Med. 38:572–578. 2010.PubMed/NCBI View Article : Google Scholar
|
13
|
Minghetti L: Cyclooxygenase-2 (COX-2) in
inflammatory and degenerative brain diseases. J Neuropathol Exp
Neurol. 63:901–910. 2004.PubMed/NCBI View Article : Google Scholar
|
14
|
Yan W, Ren D, Feng X, Huang J, Wang D, Li
T and Zhang D: Neuroprotective and Anti-Inflammatory Effect of
pterostilbene against cerebral ischemia/reperfusion injury via
suppression of COX-2. Front Pharmacol. 12(70329)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Alsahli MA, Almatroodi SA, Almatroudi A,
Khan AA, Anwar S, Almutary AG, Alrumaihi F and Rahmani AH:
6-Gingerol, a major ingredient of ginger attenuates
Diethylnitrosamine-Induced liver injury in rats through the
modulation of oxidative stress and anti-inflammatory activity.
Mediators Inflamm. 2021(6661937)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Almatroodi SA, Alnuqaydan AM, Babiker AY,
Almogbel MA, Khan AA and Husain Rahmani A: 6-Gingerol, a bioactive
compound of ginger attenuates renal damage in
Streptozotocin-Induced diabetic rats by regulating the oxidative
stress and inflammation. Pharmaceutics. 13(317)2021.PubMed/NCBI View Article : Google Scholar
|
17
|
Majdi Yazdi G, Vaezi G, Hojati V and
Mohammad-Zadeh M: The Effect of 6-gingerol on Growth factors and
apoptosis indices in rats exposed to gold nanoparticles. Basic Clin
Neurosci. 12:301–308. 2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang S, Zhang C, Yang G and Yang Y:
Biological properties of 6-gingerol: A brief review. Nat Prod
Commun. 9:1027–1030. 2014.PubMed/NCBI
|
19
|
Luo J, Chen J, Yang C, Tan J, Zhao J,
Jiang N and Zhao Y: 6-Gingerol protects against cerebral
ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and
apoptosis via TRPV1/FAF1 complex dissociation-mediated autophagy.
Int Immunopharmacol. 100(108146)2021.PubMed/NCBI View Article : Google Scholar
|
20
|
Adetuyi BO and Farombi EO: 6-Gingerol, an
active constituent of ginger, attenuates lipopolysaccharide-induced
oxidation, inflammation, cognitive deficits, neuroplasticity, and
amyloidogenesis in rat. J Food Biochem. 45(e13660)2021.PubMed/NCBI View Article : Google Scholar
|
21
|
Suekawa M, Ishige A, Yuasa K, Sudo K,
Aburada M and Hosoya E: Pharmacological studies on ginger. I.
Pharmacological actions of pungent constitutents, (6)-gingerol and
(6)-shogaol. J Pharmacobiodyn. 7:836–848. 1984.PubMed/NCBI View Article : Google Scholar
|
22
|
Jittiwat J: Baihui point laser acupuncture
ameliorates cognitive impairment, motor deficit, and neuronal loss
partly via antioxidant and anti-inflammatory effects in an animal
model of focal ischemic stroke. Evid Based Complement Alternat Med.
2019(1204709)2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Wattanathorn J, Jittiwat J, Tongun T,
Muchimapura S and Ingkaninan K: Zingiber officinale
Mitigates Brain Damage and Improves Memory Impairment in Focal
Cerebral Ischemic Rat. Evid Based Complement Alternat Med.
2011(429505)2011.PubMed/NCBI View Article : Google Scholar
|
24
|
Jittiwat J: Laser Acupuncture at GV20
Improves brain damage and oxidative stress in animal model of focal
ischemic stroke. J Acupunct Meridian Stud. 10:324–330.
2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Lowry OH, Rosebrough NJ, Farr AL and
Randall RJ: Protein measurement with the Folin phenol reagent. J
Biol Chem. 193:265–275. 1951.PubMed/NCBI
|
26
|
Ohkawa H, Ohishi N and Yagi K: Assay for
lipid peroxides in animal tissues by thiobarbituric acid reaction.
Anal Biochem. 95:351–358. 1979.PubMed/NCBI View Article : Google Scholar
|
27
|
Rossmeisl JH Jr, Rohleder JJ, Pickett JP,
Duncan R and Herring IP: Presumed and confirmed striatocapsular
brain infarctions in six dogs. Vet Ophthalmol. 10:23–36.
2007.PubMed/NCBI View Article : Google Scholar
|
28
|
Wayman C, Duricki DA, Roy LA, Haenzi B,
Tsai SY, Kartje G, Beech JS, Cash D and Moon L: Performing
permanent distal middle cerebral with common carotid artery
occlusion in aged rats to study cortical ischemia with sustained
disability. J Vis Exp. (53106)2016.PubMed/NCBI View
Article : Google Scholar
|
29
|
Teertam SK and Prakash Babu P:
Differential role of SIRT1/MAPK pathway during cerebral ischemia in
rats and humans. Sci Rep. 11(6339)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Wang C, Ma Z, Wang Z, Ming S, Ding Y, Zhou
S and Qian H: Eriodictyol attenuates MCAO-Induced brain injury and
neurological deficits via reversing the autophagy dysfunction.
Front Syst Neurosci. 15(655125)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Lee B, Choi EJ, Lee EJ, Han SM, Hahm DH,
Lee HJ and Shim I: The neuroprotective effect of methanol extract
of gagamjungjihwan and fructus euodiae on ischemia-induced neuronal
and cognitive impairment in the rat. Evid Based Complement Alternat
Med. 2011(685254)2011.PubMed/NCBI View Article : Google Scholar
|
32
|
Shah FA, Li T, Kury LTA, Zeb A, Khatoon S,
Liu G, Yang X, Liu F, Yao H, Khan AU, et al: Pathological
comparisons of the hippocampal changes in the transient and
permanent middle cerebral artery occlusion rat models. Front
Neurol. 10(1178)2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Chung JY, Yi JW, Kim SM, Lim YJ, Chung JH
and Jo DJ: Changes in gene expression in the rat hippocampus after
focal cerebral ischemia. J Korean Neurosurg Soc. 50:173–178.
2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Genovese T, Mazzon E, Paterniti I,
Esposito E, Bramanti P and Cuzzocrea S: Modulation of NADPH oxidase
activation in cerebral ischemia/reperfusion injury in rats. Brain
Res. 1372:92–102. 2011.PubMed/NCBI View Article : Google Scholar
|
35
|
Paliwal P, Dash D and Krishnamurthy S:
Pharmacokinetic study of piracetam in focal cerebral ischemic rats.
Eur J Drug Metab Pharmacokinet. 43:205–213. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Muley MM, Thakare VN, Patil RR, Bafna PA
and Naik SR: Amelioration of cognitive, motor and endogenous
defense functions with silymarin, piracetam and protocatechuic acid
in the cerebral global ischemic rat model. Life Sci. 93:51–57.
2013.PubMed/NCBI View Article : Google Scholar
|
37
|
He Z, Liao Y, Zheng M, Zeng FD and Guo LJ:
Piracetam improves cognitive deficits caused by chronic cerebral
hypoperfusion in rats. Cell Mol Neurobiol. 28:613–627.
2008.PubMed/NCBI View Article : Google Scholar
|
38
|
Rezazadeh-Shojaee FS, Ramazani E, Kasaian
J and Tayarani-Najaran Z: Protective effects of 6-gingerol on
6-hydroxydopamine-induced apoptosis in PC12 cells through
modulation of SAPK/JNK and survivin activation. J Biochem Mol
Toxicol. 36(e22956)2022.PubMed/NCBI View Article : Google Scholar
|
39
|
Zhao M, Yao Y, Du J, Kong L, Zhao T, Wu D,
Man L and Zhou W: 6-Gingerol Alleviates neonatal hypoxic-ischemic
cerebral and white matter injury and contributes to functional
recovery. Front Pharmacol. 12(707772)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Liu Z, Ren Z, Zhang J, Chuang CC,
Kandaswamy E, Zhou T and Zuo L: Role of ROS and Nutritional
antioxidants in human diseases. Front Physiol.
9(477)2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Gorjão R, Takahashi HK, Pan JA and Massao
Hirabara S: Molecular mechanisms involved in inflammation and
insulin resistance in chronic diseases and possible interventions.
J Biomed Biotechnol. 2012(841983)2012.PubMed/NCBI View Article : Google Scholar
|
42
|
Liou GY and Storz P: Reactive oxygen
species in cancer. Free Radic Res. 44:479–496. 2010.PubMed/NCBI View Article : Google Scholar
|
43
|
Mohd Yusof YA: Gingerol and its role in
chronic diseases. Adv Exp Med Biol. 929:177–207. 2016.PubMed/NCBI View Article : Google Scholar
|
44
|
El-Senousey HK, Chen B, Wang JY, Atta AM,
Mohamed FR and Nie QH: Effects of dietary vitamin C, vitamin E, and
alpha-lipoic acid supplementation on the antioxidant defense system
and immune-related gene expression in broilers exposed to oxidative
stress by dexamethasone. Poult Sci. 97:30–38. 2018.PubMed/NCBI View Article : Google Scholar
|
45
|
Watts LT, Lloyd R, Garling RJ and Duong T:
Stroke neuroprotection: Targeting mitochondria. Brain Sci.
3:540–560. 2013.PubMed/NCBI View Article : Google Scholar
|
46
|
Farombi EO, Abolaji AO, Adetuyi BO,
Awosanya O and Fabusoro M: Neuroprotective role of 6-Gingerol-rich
fraction of Zingiber officinale (Ginger) against
acrylonitrile-induced neurotoxicity in male Wistar rats. J Basic
Clin Physiol Pharmacol. 30:2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Whiteley W, Jackson C, Lewis S, Lowe G,
Rumley A, Sandercock P, Wardlaw J, Dennis M and Sudlow C:
Inflammatory markers and poor outcome after stroke: A prospective
cohort study and systematic review of interleukin 6. PLoS Med.
6(e1000145)2009.PubMed/NCBI View Article : Google Scholar
|
48
|
Ju SA, Nguyen QT, Nguyen TT, Suh JH, An
WG, Callaway Z, Joe Y, Chung HT and Kim BS: Pretreatment with
6-Gingerol Ameliorates Sepsis-Induced Immune Dysfunction by
Regulating the Cytokine Balance and Reducing Lymphocyte Apoptosis.
Oxid Med Cell Longev. 2021(5427153)2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Hwang YH, Kim T, Kim R and Ha H: The
Natural Product 6-Gingerol Inhibits Inflammation-Associated
Osteoclast Differentiation via Reduction of Prostaglandin
E2 Levels. Int J Mol Sci. 19(2068)2018.PubMed/NCBI View Article : Google Scholar
|
50
|
Tripathi S, Maier KG, Bruch D and Kittur
DS: Effect of 6-gingerol on pro-inflammatory cytokine production
and costimulatory molecule expression in murine peritoneal
macrophages. J Surg Res. 138:209–213. 2007.PubMed/NCBI View Article : Google Scholar
|
51
|
Kim SO, Chun KS, Kundu JK and Surh YJ:
Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression
and activation of NF-kappaB and p38 MAPK in mouse skin. Biofactors.
21:27–31. 2004.PubMed/NCBI View Article : Google Scholar
|
52
|
Gugliandolo A, Silvestro S, Sindona C,
Bramanti P and Mazzon E: MiRNA: Involvement of the MAPK Pathway in
Ischemic Stroke. A Promising Therapeutic Target. Medicina (Kaunas).
57(1053)2021.PubMed/NCBI View Article : Google Scholar
|
53
|
Safa A, Abak A, Shoorei H, Taheri M and
Ghafouri-Fard S: MicroRNAs as regulators of ERK/MAPK pathway: A
comprehensive review. Biomed Pharmacother.
132(110853)2020.PubMed/NCBI View Article : Google Scholar
|
54
|
Yang M, He Y, Deng S, Xiao L, Tian M, Xin
Y, Lu C, Zhao F and Gong Y: Mitochondrial Quality Control: A
pathophysiological mechanism and therapeutic target for stroke.
Front Mol Neurosci. 14(786099)2021.PubMed/NCBI View Article : Google Scholar
|
55
|
Vongsfak J, Pratchayasakul W, Apaijai N,
Vaniyapong T, Chattipakorn N and Chattipakorn SC: The alterations
in mitochondrial dynamics following cerebral ischemia/reperfusion
injury. Antioxidants (Basel). 10(1384)2021.PubMed/NCBI View Article : Google Scholar
|