Neurobiology of bruxism: The impact of stress (Review)
- Authors:
- Ioannis A. Pavlou
- Demetrios A. Spandidos
- Vassilis Zoumpourlis
- Veronica K. Papakosta
-
Affiliations: Iasis Dental (Private Practice), 12241 Athens, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece, Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece, Department of Oral and Maxillofacial Surgery, University Hospital Attikon, 12462 Athens, Greece - Published online on: February 5, 2024 https://doi.org/10.3892/br.2024.1747
- Article Number: 59
-
Copyright: © Pavlou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Commisso MS, Martinez-Reina J and Mayo J: A study of the temporomandibular joint during bruxism. Int J Oral Sci. 6:116–123. 2014.PubMed/NCBI View Article : Google Scholar | |
Lobbezoo F, Ahlberg J, Glaros AG, Kato T, Koyano K, Lavigne GJ, de Leeuw R, Manfredini D, Svensson P and Winocur E: Bruxism defined and graded: An international consensus. J Oral Rehabil. 40:2–4. 2013.PubMed/NCBI View Article : Google Scholar | |
K L: How sleep bruxism and tension headaches affect the masseter inhibitory reflex. J Sleep Disor Treat Care. 6:2017. | |
Lobbezoo F, Ahlberg J, Raphael KG, Glaros AG, Kato T, Santiago V, Winocur E, De Laat A, De Leeuw R, Koyano K, et al: International consensus on the assessment of bruxism: Report of a work in progress. J Oral Rehabil. 45:837–844. 2018.PubMed/NCBI View Article : Google Scholar | |
Simoes WA: Occlusal plane: A clinical evaluation. J Clin Pediatr Dent. 19:75–81. 1995.PubMed/NCBI | |
Lavigne GJ, Huynh N, Kato T, Okura K, Adachi K, Yao D and Sessle B: Genesis of sleep bruxism: Motor and autonomic-cardiac interactions. Arch Oral Biol. 52:381–384. 2007.PubMed/NCBI View Article : Google Scholar | |
Manfredini D, Winocur E, Guarda-Nardini L, Paesani D and Lobbezoo F: Epidemiology of bruxism in adults: A systematic review of the literature. J Orofac Pain. 27:99–110. 2013.PubMed/NCBI View Article : Google Scholar | |
Manfredini D, Piccotti F, Ferronato G and Guarda-Nardini L: Age peaks of different RDC/TMD diagnoses in a patient population. J Dent. 38:392–399. 2010.PubMed/NCBI View Article : Google Scholar | |
Chisnoiu AM, Buduru S, Lascu L, Vesa SC, Picos AM, Pascu L and Chisnoiu R: Influence of occlusal characteristics on temporomandibular joint disorder development-a cross-sectional study. Hum Vet Med. 7:197–201. 2015. | |
Bostwick JM and Jaffee MS: Buspirone as an antidote to SSRI-induced bruxism in 4 cases. J Clin Psychiatry. 60:857–860. 1999.PubMed/NCBI View Article : Google Scholar | |
Bayar GR, Tutuncu R and Acikel C: Psychopathological profile of patients with different forms of bruxism. Clin Oral Investig. 16:305–311. 2012.PubMed/NCBI View Article : Google Scholar | |
Segall SK, Maixner W, Belfer I, Wiltshire T, Seltzer Z and Diatchenko L: Janus molecule I: Dichotomous effects of COMT in neuropathic vs nociceptive pain modalities. CNS Neurol Disord Drug Targets. 11:222–235. 2012.PubMed/NCBI View Article : Google Scholar | |
Smith SB, Maixner DW, Greenspan JD, Dubner R, Fillingim RB, Ohrbach R, Knott C, Slade GD, Bair E, Gibson DG, et al: Potential genetic risk factors for chronic TMD: Genetic associations from the OPPERA case control study. J Pain. 12 (11 Suppl):T92–T101. 2011.PubMed/NCBI View Article : Google Scholar | |
Oporto GH V, Bornhardt T, Iturriaga V and Salazar LA: Genetic polymorphisms in the serotonergic system are associated with circadian manifestations of bruxism. J Oral Rehabil. 43:805–812. 2016.PubMed/NCBI View Article : Google Scholar | |
Cruz-Fierro N, Martinez-Fierro M, Cerda-Flores RM, Gómez-Govea MA, Delgado-Enciso I, Martínez-De-Villarreal LE, González-Ramírez MT and Rodríguez-Sánchez IP: The phenotype, psychotype and genotype of bruxism. Biomed Rep. 8:264–268. 2018.PubMed/NCBI View Article : Google Scholar | |
Fillingim RB, Ohrbach R, Greenspan JD, Knott C, Diatchenko L, Dubner R, Bair E, Baraian C, Mack N, Slade GD and Maixner W: Psychological factors associated with development of TMD: The OPPERA prospective cohort study. J Pain. 14 (12 Suppl):T75–T90. 2013.PubMed/NCBI View Article : Google Scholar | |
Bertoli E, de Leeuw R, Schmidt JE, Okeson JP and Carlson CR: Prevalence and impact of post-traumatic stress disorder symptoms in patients with masticatory muscle or temporomandibular joint pain: Differences and similarities. J Orofac Pain. 21:107–119. 2007.PubMed/NCBI | |
Guidi J, Lucente M, Sonino N and Fava GA: Allostatic load and its impact on health: A systematic review. Psychother Psychosom. 90:11–27. 2021.PubMed/NCBI View Article : Google Scholar | |
Tsai CM, Chou SL, Gale EN and McCall WD Jr: Human masticatory muscle activity and jaw position under experimental stress. J Oral Rehabil. 29:44–51. 2002.PubMed/NCBI View Article : Google Scholar | |
Manfredini D and Lobbezoo F: Role of psychosocial factors in the etiology of bruxism. J Orofac Pain. 23:153–166. 2009.PubMed/NCBI | |
Herman JP and Mueller NK: Role of the ventral subiculum in stress integration. Behav Brain Res. 174:215–224. 2006.PubMed/NCBI View Article : Google Scholar | |
Rosen JB, Fanselow MS, Young SL, Sitcoske M and Maren S: Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Res. 796:132–142. 1998.PubMed/NCBI View Article : Google Scholar | |
Piazza PV and Le Moal M: The role of stress in drug self-administration. Trends Pharmacol Sci. 19:67–74. 1998.PubMed/NCBI View Article : Google Scholar | |
Floresco SB, West AR, Ash B, Moore H and Grace AA: Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci. 6:968–973. 2003.PubMed/NCBI View Article : Google Scholar | |
Lavigne GJ, Kato T, Kolta A and Sessle BJ: Neurobiological mechanisms involved in sleep bruxism. Crit Rev Oral Biol Med. 14:30–46. 2003.PubMed/NCBI View Article : Google Scholar | |
Blanchet PJ, Rompré PH, Lavigne GJ and Lamarche C: Oral dyskinesia: A clinical overview. Int J Prosthodont. 18:10–19. 2005.PubMed/NCBI | |
Clark GT and Ram S: Four oral motor disorders: Bruxism, dystonia, dyskinesia and drug-induced dystonic extrapyramidal reactions. Dent Clin North Am. 51:225–243, viii-ix. 2007.PubMed/NCBI View Article : Google Scholar | |
Kwak YT, Han IW, Lee PH, Yoon JK and Suk SH: Associated conditions and clinical significance of awake bruxism. Geriatr Gerontol Int. 9:382–390. 2009.PubMed/NCBI View Article : Google Scholar | |
Garrett AR and Hawley JS: SSRI-associated bruxism: A systematic review of published case reports. Neurol Clin Pract. 8:135–141. 2018.PubMed/NCBI View Article : Google Scholar | |
Okamoto K, Imbe H, Tashiro A, Kimura A, Donishi T, Tamai Y and Senba E: The role of peripheral 5HT2A and 5HT1A receptors on the orofacial formalin test in rats with persistent temporomandibular joint inflammation. Neuroscience. 130:465–474. 2005.PubMed/NCBI View Article : Google Scholar | |
Nakanishi O and Ishikawa T: Involvement of peripheral 5-HT2A receptor activation in inflammatory pain. Nihon Rinsho. 59:1675–1680. 2001.PubMed/NCBI(In Japanese). | |
López JF, Vázquez DM, Chalmers DT and Watson SJ: Regulation of 5-HT receptors and the hypothalamic-pituitary-adrenal axis. Implications for the neurobiology of suicide. Ann N Y Acad Sci. 836:106–134. 1997.PubMed/NCBI View Article : Google Scholar | |
Yeung LY, Kung HF and Yew DT: Localization of 5-HT1A and 5-HT2A positive cells in the brainstems of control age-matched and Alzheimer individuals. Age (Dordr). 32:483–495. 2010.PubMed/NCBI View Article : Google Scholar | |
İnan R, Şenel GB, Yavlal F, Karadeniz D, Gündüz A and Kiziltan ME: Sleep bruxism is related to decreased inhibitory control of trigeminal motoneurons, but not with reticulobulbar system. Neurol Sci. 38:75–81. 2017.PubMed/NCBI View Article : Google Scholar | |
Belujon P and Grace AA: Critical role of the prefrontal cortex in the regulation of hippocampus-accumbens information flow. J Neurosci. 28:9797–9805. 2008.PubMed/NCBI View Article : Google Scholar | |
Floresco SB, Blaha CD, Yang CR and Phillips AG: Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: Cellular mechanisms of input selection. J Neurosci. 21:2851–2860. 2001.PubMed/NCBI View Article : Google Scholar | |
Valenti O, Gill KM and Grace AA: Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: Response alteration by stress pre-exposure. Eur J Neurosci. 35:1312–1321. 2012.PubMed/NCBI View Article : Google Scholar | |
Dunlop BW and Nemeroff CB: The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 64:327–337. 2007.PubMed/NCBI View Article : Google Scholar | |
Ueno Y, Higashiyama M, Haque T, Masuda Y, Katagiri A, Toyoda H, Uzawa N, Yoshida A and Kato T: Motor representation of rhythmic jaw movements in the amygdala of guinea pigs. Arch Oral Biol. 135(105362)2022.PubMed/NCBI View Article : Google Scholar | |
Jie F, Yin G, Yang W, Yang M, Gao S, Lv J and Li B: Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases. Front Neurosci. 12(562)2018.PubMed/NCBI View Article : Google Scholar | |
Klausberger T and Somogyi P: Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science. 321:53–57. 2008.PubMed/NCBI View Article : Google Scholar | |
Prager EM, Bergstrom HC, Wynn GH and Braga MF: The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res. 94:548–567. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu ZP, Song C, Wang M, He Y, Xu XB, Pan HQ, Chen WB, Peng WJ and Pan BX: Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Mol Brain. 7(32)2014.PubMed/NCBI View Article : Google Scholar | |
Quessy F, Bittar T, Blanchette LJ, Lévesque M and Labonté B: Stress-induced alterations of mesocortical and mesolimbic dopaminergic pathways. Sci Rep. 11(11000)2021.PubMed/NCBI View Article : Google Scholar | |
Peña CJ, Kronman HG, Walker DM, Cates HM, Bagot RC, Purushothaman I, Issler O, Loh YE, Leong T, Kiraly DD, et al: Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science. 356:1185–1188. 2017.PubMed/NCBI View Article : Google Scholar | |
Bagot RC, Cates HM, Purushothaman I, Lorsch ZS, Walker DM, Wang J, Huang X, Schlüter OM, Maze I, Peña CJ, et al: Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility. Neuron. 90:969–983. 2016.PubMed/NCBI View Article : Google Scholar | |
Watanabe M, Narita M, Hamada Y, Yamashita A, Tamura H, Ikegami D, Kondo T, Shinzato T, Shimizu T, Fukuchi Y, et al: Activation of ventral tegmental area dopaminergic neurons reverses pathological allodynia resulting from nerve injury or bone cancer. Mol Pain. 14(1744806918756406)2018.PubMed/NCBI View Article : Google Scholar | |
Baliki MN, Geha PY, Fields HL and Apkarian AV: Predicting value of pain and analgesia: Nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron. 66:149–160. 2010.PubMed/NCBI View Article : Google Scholar | |
Martikainen IK, Nuechterlein EB, Peciña M, Love TM, Cummiford CM, Green CR, Stohler CS and Zubieta JK: Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J Neurosci. 35:9957–9965. 2015.PubMed/NCBI View Article : Google Scholar | |
Borsook D, Linnman C, Faria V, Strassman AM, Becerra L and Elman I: Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev. 68:282–297. 2016.PubMed/NCBI View Article : Google Scholar | |
Ramdani C, Carbonnell L, Vidal F, Béranger C, Dagher A and Hasbroucq T: Dopamine precursors depletion impairs impulse control in healthy volunteers. Psychopharmacology (Berl). 232:477–487. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhao YJ, Liu Y, Wang J, Li Q, Zhang ZM, Tu T, Lei R, Zhang M and Chen YJ: Activation of the mesencephalic trigeminal nucleus contributes to masseter hyperactivity induced by chronic restraint stress. Front Cell Neurosci. 16(841133)2022.PubMed/NCBI View Article : Google Scholar | |
Wall EM and Woolley SC: Acetylcholine in action. Elife. 9(e57515)2020.PubMed/NCBI View Article : Google Scholar | |
Miranda-Vilela AL, Akimoto AK, Lordelo GS, Pereira LC, Grisolia CK and Klautau-Guimarães Mde N: Creatine kinase MM TaqI and methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms influence exercise-induced C-reactive protein levels. Eur J Appl Physiol. 112:183–192. 2012.PubMed/NCBI View Article : Google Scholar | |
Boscato N, Exposto F, Nascimento GG, Svensson P and Costa YM: Is bruxism associated with changes in neural pathways? A systematic review and meta-analysis of clinical studies using neurophysiological techniques. Brain Imaging Behav. 16:2268–2280. 2022.PubMed/NCBI View Article : Google Scholar | |
Chmieliauskaite M, Stelson EA, Epstein JB, Klasser GD, Farag A, Carey B, Albuquerque R, Mejia L, Ariyawardana A, Nasri-Heir C, et al: Consensus agreement to rename burning mouth syndrome and improve international classification of diseases-11 disease criteria: An international Delphi study. Pain. 162:2548–2557. 2021.PubMed/NCBI View Article : Google Scholar | |
Jääskeläinen SK: Pathophysiology of primary burning mouth syndrome. Clin Neurophysiol. 123:71–77. 2012.PubMed/NCBI View Article : Google Scholar | |
Corsalini M, Di Venere D, Pettini F, Lauritano D and Petruzzi M: Temporomandibular disorders in burning mouth syndrome patients: An observational study. Int J Med Sci. 10:1784–1789. 2013.PubMed/NCBI View Article : Google Scholar | |
Lauria G, Majorana A, Borgna M, Lombardi R, Penza P, Padovani A and Sapelli P: Trigeminal small-fiber sensory neuropathy causes burning mouth syndrome. Pain. 115:332–337. 2005.PubMed/NCBI View Article : Google Scholar | |
Forssell H, Jääskeläinen S, Tenovuo O and Hinkka S: Sensory dysfunction in burning mouth syndrome. Pain. 99:41–47. 2002.PubMed/NCBI View Article : Google Scholar | |
Kubo KY, Iinuma M and Chen H: Mastication as a Stress-coping behavior. Biomed Res Int. 2015(876409)2015.PubMed/NCBI View Article : Google Scholar | |
Chen H, Iinuma M, Onozuka M and Kubo KY: Chewing maintains hippocampus-dependent cognitive function. Int J Med Sci. 12:502–509. 2015.PubMed/NCBI View Article : Google Scholar | |
Mori D, Katayama T, Miyake H, Fujiwara S and Kubo KY: Occlusal disharmony leads to learning deficits associated with decreased cellular proliferation in the hippocampal dentate gyrus of SAMP8 mice. Neurosci Lett. 534:228–232. 2013.PubMed/NCBI View Article : Google Scholar | |
Mori D, Miyake H, Mizutani K, Shimpo K, Sonoda S, Yamamoto T, Fujiwara S and Kubo KY: Effects of occlusal disharmony on the hippocampal dentate gyrus in aged senescence-accelerated mouse prone 8 (SAMP8). Arch Oral Biol. 65:95–101. 2016.PubMed/NCBI View Article : Google Scholar | |
Azuma K, Ogura M, Kondo H, Suzuki A, Hayashi S, Iinuma M, Onozuka M and Kubo KY: Maternal active mastication during prenatal stress ameliorates prenatal stress-induced lower bone mass in adult mouse offspring. Int J Med Sci. 14:348–355. 2017.PubMed/NCBI View Article : Google Scholar | |
Suzuki A, Iinuma M, Hayashi S, Sato Y, Azuma K and Kubo KY: Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring. Brain Res. 1651:36–43. 2016.PubMed/NCBI View Article : Google Scholar | |
Onishi M, Iinuma M, Tamura Y and Kubo KY: Learning deficits and suppression of the cell proliferation in the hippocampal dentate gyrus of offspring are attenuated by maternal chewing during prenatal stress. Neurosci Lett. 560:77–80. 2014.PubMed/NCBI View Article : Google Scholar | |
Snyder JS, Soumier A, Brewer M, Pickel J and Cameron HA: Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 476:458–461. 2011.PubMed/NCBI View Article : Google Scholar | |
Shirasu M, Takahashi T, Yamamoto T, Itoh K, Sato S and Nakamura H: Direct projections from the central amygdaloid nucleus to the mesencephalic trigeminal nucleus in rats. Brain Res. 1400:19–30. 2011.PubMed/NCBI View Article : Google Scholar | |
Han W, Tellez LA, Rangel MJ Jr, Motta SC, Zhang X, Perez IO, Canteras NS, Shammah-Lagnado SJ, van den Pol AN and de Araujo IE: Integrated control of predatory hunting by the central nucleus of the amygdala. Cell. 168:311–324.e18. 2017.PubMed/NCBI View Article : Google Scholar | |
Kaya B, Geha P, de Araujo I, Cioffi I and Moayedi M: Identification of central amygdala and trigeminal motor nucleus connectivity in humans: An ultra-high field diffusion MRI study. Hum Brain Mapp. 44:1309–1319. 2023.PubMed/NCBI View Article : Google Scholar | |
Kolta A, Westberg KG and Lund JP: Identification of brainstem interneurons projecting to the trigeminal motor nucleus and adjacent structures in the rabbit. J Chem Neuroanat. 19:175–195. 2000.PubMed/NCBI View Article : Google Scholar | |
Nishigawa K, Bando E and Nakano M: Quantitative study of bite force during sleep associated bruxism. J Oral Rehabil. 28:485–491. 2001.PubMed/NCBI View Article : Google Scholar | |
Trulsson M: Sensory-motor function of human periodontal mechanoreceptors. J Oral Rehabil. 33:262–273. 2006.PubMed/NCBI View Article : Google Scholar | |
Trulsson M: Force encoding by human periodontal mechanoreceptors during mastication. Arch Oral Biol. 52:357–360. 2007.PubMed/NCBI View Article : Google Scholar | |
Trulsson M, Johansson RS and Olsson KA: Directional sensitivity of human periodontal mechanoreceptive afferents to forces applied to the teeth. J Physiol. 447:373–389. 1992.PubMed/NCBI View Article : Google Scholar | |
Pang YW, Li JL, Nakamura K, Wu S, Kaneko T and Mizuno N: Expression of vesicular glutamate transporter 1 immunoreactivity in peripheral and central endings of trigeminal mesencephalic nucleus neurons in the rat. J Comp Neurol. 498:129–141. 2006.PubMed/NCBI View Article : Google Scholar | |
Ishii T, Suenaga R, Iwata W, Miyata R, Fujikawa R and Muroi Y: Bilateral lesions of the mesencephalic trigeminal sensory nucleus stimulate hippocampal neurogenesis but lead to severe deficits in spatial memory resetting. Brain Res. 1342:74–84. 2010.PubMed/NCBI View Article : Google Scholar | |
Yokoyama S, Kinoshita K, Muroi Y and Ishii T: The effects of bilateral lesions of the mesencephalic trigeminal sensory nucleus on nocturnal feeding and related behaviors in mice. Life Sci. 93:681–686. 2013.PubMed/NCBI View Article : Google Scholar | |
Andrisani G: Teeth and central nervous system: What happens when you go to sleep. Sleep Med Dis Int J. 1:21–25. 2017. | |
Saper CB, Chou TC and Scammell TE: The sleep switch: Hypothalamic control of sleep and wakefulness. Trends Neurosci. 24:726–731. 2001.PubMed/NCBI View Article : Google Scholar | |
Szymusiak R and McGinty D: Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci. 1129:275–286. 2008.PubMed/NCBI View Article : Google Scholar | |
Luppi PH: Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep. World J Biol Psychiatry. 11 (Suppl 1):S4–S8. 2010.PubMed/NCBI View Article : Google Scholar | |
Zhu J, Li X, Zhu F, Chen L, Zhang C, McGrath C, He F, Xiao Y and Jin L: Multiple tooth loss is associated with vascular cognitive impairment in subjects with acute ischemic stroke. J Periodontal Res. 50:683–688. 2015.PubMed/NCBI View Article : Google Scholar | |
Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS and van Den Pol AN: Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 415:145–159. 1999.PubMed/NCBI | |
Okumura T, Takeuchi S, Motomura W, Yamada H, Egashira Si S, Asahi S, Kanatani A, Ihara M and Kohgo Y: Requirement of intact disulfide bonds in orexin-A-induced stimulation of gastric acid secretion that is mediated by OX1 receptor activation. Biochem Biophys Res Commun. 280:976–981. 2001.PubMed/NCBI View Article : Google Scholar | |
Satoh Y, Uchida M, Fujita A, Nishio H, Takeuchi T and Hata F: Possible role of orexin A in nonadrenergic, noncholinergic inhibitory response of muscle of the mouse small intestine. Eur J Pharmacol. 428:337–342. 2001.PubMed/NCBI View Article : Google Scholar | |
Cruccu G, Frisardi G, Pauletti G, Romaniello A and Manfredi M: Excitability of the central masticatory pathways in patients with painful temporomandibular disorders. Pain. 73:447–454. 1997.PubMed/NCBI View Article : Google Scholar | |
Floresco SB: Dopaminergic regulation of limbic-striatal interplay. J Psychiatry Neurosci. 32:400–411. 2007.PubMed/NCBI | |
Belujon P and Grace AA: Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc Biol Sci. 282(20142516)2015.PubMed/NCBI View Article : Google Scholar | |
Ono Y, Yamamoto T, Kubo KY and Onozuka M: Occlusion and brain function: Mastication as a prevention of cognitive dysfunction. J Oral Rehabil. 37:624–640. 2010.PubMed/NCBI View Article : Google Scholar | |
Hansen PO, Svensson P, Arendt-Nielsen L and Jensen TS: Human masseter inhibitory reflexes evoked by repetitive electrical stimulation. Clin Neurophysiol. 113:236–242. 2002.PubMed/NCBI View Article : Google Scholar | |
Onozuka M, Watanabe K, Nagasaki S, Jiang Y, Ozono S, Nishiyama K, Kawase T, Karasawa N and Nagatsu I: Impairment of spatial memory and changes in astroglial responsiveness following loss of molar teeth in aged SAMP8 mice. Behav Brain Res. 108:145–155. 2000.PubMed/NCBI View Article : Google Scholar | |
Kubo KY, Yamada Y, Iinuma M, Iwaku F, Tamura Y, Watanabe K, Nakamura H and Onozuka M: Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice. Neurosci Lett. 414:188–191. 2007.PubMed/NCBI View Article : Google Scholar | |
Proietti R, Mapelli D, Volpe B, Bartoletti S, Sagone A, Dal Bianco L and Daliento L: Mental stress and ischemic heart disease: evolving awareness of a complex association. Future Cardiol. 7:425–437. 2011.PubMed/NCBI View Article : Google Scholar | |
Reber SO: Stress and animal models of inflammatory bowel disease-an update on the role of the hypothalamo-pituitary-adrenal axis. Psychoneuroendocrinology. 37:1–19. 2012.PubMed/NCBI View Article : Google Scholar | |
Furuzawa M, Chen H, Fujiwara S, Yamada K and Kubo KY: Chewing ameliorates chronic mild stress-induced bone loss in senescence-accelerated mouse (SAMP8), a murine model of senile osteoporosis. Exp Gerontol. 55:12–18. 2014.PubMed/NCBI View Article : Google Scholar | |
van Selms MK, Lobbezoo F, Visscher CM and Naeije M: Myofascial temporomandibular disorder pain, parafunctions and psychological stress. J Oral Rehabil. 35:45–52. 2008.PubMed/NCBI View Article : Google Scholar | |
Di Paolo C, Costanzo GD, Panti F, Rampello A, Falisi G, Pilloni A, Cascone P and Iannetti G: Epidemiological analysis on 2375 patients with TMJ disorders: Basic statistical aspects. Ann Stomatol (Roma). 4:161–169. 2013.PubMed/NCBI View Article : Google Scholar | |
Safari A, Jowkar Z and Farzin M: Evaluation of the relationship between bruxism and premature occlusal contacts. J Contemp Dent Pract. 14:616–621. 2013.PubMed/NCBI View Article : Google Scholar | |
Fritzen VM, Colonetti T, Cruz MVB, Ferraz SD, Ceretta L, Tuon L, DA Rosa MI and Ceretta RA: Levels of salivary cortisol in adults and children with bruxism diagnosis: A systematic review and meta-analysis. J Evid Based Dent Pract. 22(101634)2022.PubMed/NCBI View Article : Google Scholar | |
Chung S, Son GH and Kim K: Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochim Biophys Acta. 1812:581–591. 2011.PubMed/NCBI View Article : Google Scholar | |
Glaros AG, Williams K and Lausten L: The role of parafunctions, emotions and stress in predicting facial pain. J Am Dent Assoc. 136:451–458. 2005.PubMed/NCBI View Article : Google Scholar | |
Leistad RB, Sand T, Westgaard RH, Nilsen KB and Stovner LJ: Stress-induced pain and muscle activity in patients with migraine and tension-type headache. Cephalalgia. 26:64–73. 2006.PubMed/NCBI View Article : Google Scholar | |
de Leeuw R, Schmidt JE and Carlson CR: Traumatic stressors and post-traumatic stress disorder symptoms in headache patients. Headache. 45:1365–1374. 2005.PubMed/NCBI View Article : Google Scholar | |
Rompré PH, Daigle-Landry D, Guitard F, Montplaisir JY and Lavigne GJ: Identification of a sleep bruxism subgroup with a higher risk of pain. J Dent Res. 86:837–842. 2007.PubMed/NCBI View Article : Google Scholar | |
Camparis CM, Formigoni G, Teixeira MJ, Bittencourt LR, Tufik S and de Siqueira JT: Sleep bruxism and temporomandibular disorder: Clinical and polysomnographic evaluation. Arch Oral Biol. 51:721–728. 2006.PubMed/NCBI View Article : Google Scholar | |
Rossetti LM, Pereira de Araujo Cdos R, Rossetti PH and Conti PC: Association between rhythmic masticatory muscle activity during sleep and masticatory myofascial pain: A polysomnographic study. J Orofac Pain. 22:190–200. 2008.PubMed/NCBI | |
Lavigne GJ, Rompré PH, Poirier G, Huard H, Kato T and Montplaisir JY: Rhythmic masticatory muscle activity during sleep in humans. J Dent Res. 80:443–448. 2001.PubMed/NCBI View Article : Google Scholar | |
Miyake H, Mori D, Katayama T, Fujiwara S, Sato Y, Azuma K and Kubo KY: Novel stress increases hypothalamic-pituitary-adrenal activity in mice with a raised bite. Arch Oral Biol. 68:55–60. 2016.PubMed/NCBI View Article : Google Scholar | |
Aizawa H, Cui W, Tanaka K and Okamoto H: Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci. 7(826)2013.PubMed/NCBI View Article : Google Scholar | |
Gameiro GH, da Silva Andrade A, Nouer DF and Ferraz de Arruda Veiga MC: How may stressful experiences contribute to the development of temporomandibular disorders? Clin Oral Investig. 10:261–268. 2006.PubMed/NCBI View Article : Google Scholar | |
Liu X, Zhou KX, Yin NN, Zhang CK, Shi MH, Zhang HY, Wang DM, Xu ZJ, Zhang JD, Li JL and Wang MQ: Malocclusion generates anxiety-like behavior through a putative lateral habenula-mesencephalic trigeminal nucleus pathway. Front Mol Neurosci. 12(174)2019.PubMed/NCBI View Article : Google Scholar | |
Kubo KY, Huayue C and Onozuk M: The relationship between mastication and cognition. Senescence and Senescence-Related Disorders. 2013. | |
Onozuka M, Hirano Y, Tachibana A, Kim W, Ono Y, Sasaguri K, Kubo K, Niwa M, Kanematsu K and Watanabe K: Interactions between chewing and brain activity in humans. In: Novel Trends in Brain Science: Brain Imaging, Learning and Memory, Stress and Fear, and Pain. Onozuka M and Yen CT (eds). Springer Japan, Tokyo, pp99-113, 2008. | |
Ichihashi Y, Arakawa Y, Iinuma M, Tamura Y, Kubo KY, Iwaku F, Sato Y and Onozuka M: Occlusal disharmony attenuates glucocorticoid negative feedback in aged SAMP8 mice. Neurosci Lett. 427:71–76. 2007.PubMed/NCBI View Article : Google Scholar | |
Miura H, Kariyasu M, Yamasaki K, Arai Y and Sumi Y: Relationship between general health status and the change in chewing ability: A longitudinal study of the frail elderly in Japan over a 3-year period. Gerodontology. 22:200–205. 2005.PubMed/NCBI View Article : Google Scholar | |
Watanabe K, Ozono S, Nishiyama K, Saito S, Tonosaki K, Fujita M and Onozuka M: The molarless condition in aged SAMP8 mice attenuates hippocampal Fos induction linked to water maze performance. Behav Brain Res. 128:19–25. 2002.PubMed/NCBI View Article : Google Scholar | |
Onozuka M, Watanabe K, Fujita M, Tonosaki K and Saito S: Evidence for involvement of glucocorticoid response in the hippocampal changes in aged molarless SAMP8 mice. Behav Brain Res. 131:125–129. 2002.PubMed/NCBI View Article : Google Scholar | |
Kubo KY, Iwaku F, Watanabe K, Fujita M and Onozuka M: Molarless-induced changes of spines in hippocampal region of SAMP8 mice. Brain Res. 1057:191–195. 2005.PubMed/NCBI View Article : Google Scholar | |
Aoki H, Kimoto K, Hori N, Hoshi N, Yamamoto T and Onozuka M: Molarless condition suppresses proliferation but not differentiation rates into neurons in the rat dentate gyrus. Neurosci Lett. 469:44–48. 2010.PubMed/NCBI View Article : Google Scholar | |
Iinuma M, Kondo H, Kurahashi M, Ohnishi M, Tamura Y, Caen H and Kubo KY: Relationship between the early toothless condition and hippocampal functional morphology. Anat Physiol. 4(1000149)2014. | |
Onozuka M, Watanabe K, Mirbod SM, Ozono S, Nishiyama K, Karasawa N and Nagatsu I: Reduced mastication stimulates impairment of spatial memory and degeneration of hippocampal neurons in aged SAMP8 mice. Brain Res. 826:148–153. 1999.PubMed/NCBI View Article : Google Scholar | |
Kubo KY, Kojo A, Yamamoto T and Onozuka M: The bite-raised condition in aged SAMP8 mice induces dendritic spine changes in the hippocampal region. Neurosci Lett. 441:141–144. 2008.PubMed/NCBI View Article : Google Scholar | |
Katayama T, Mori D, Miyake H, Fujiwara S, Ono Y, Takahashi T, Onozuka M and Kubo KY: Effect of bite-raised condition on the hippocampal cholinergic system of aged SAMP8 mice. Neurosci Lett. 520:77–81. 2012.PubMed/NCBI View Article : Google Scholar | |
Chaouloff F: Regulation of 5-HT receptors by corticosteroids: Where do we stand? Fundam Clin Pharmacol. 9:219–233. 1995.PubMed/NCBI View Article : Google Scholar | |
Hikosaka O: The habenula: From stress evasion to value-based decision-making. Nat Rev Neurosci. 11:503–513. 2010.PubMed/NCBI View Article : Google Scholar | |
Shelton L, Becerra L and Borsook D: Unmasking the mysteries of the habenula in pain and analgesia. Prog Neurobiol. 96:208–219. 2012.PubMed/NCBI View Article : Google Scholar | |
Boulos LJ, Darcq E and Kieffer BL: Translating the habenula-from rodents to humans. Biol Psychiatry. 81:296–305. 2017.PubMed/NCBI View Article : Google Scholar | |
Ohara H, Tachibana Y, Fujio T, Takeda-Ikeda R, Sato F, Oka A, Kato T, Ikenoue E, Yamashiro T and Yoshida A: Direct projection from the lateral habenula to the trigeminal mesencephalic nucleus in rats. Brain Res. 1630:183–197. 2016.PubMed/NCBI View Article : Google Scholar | |
Li K, Zhou T, Liao L, Yang Z, Wong C, Henn F, Malinow R, Yates JR III and Hu H: βCaMKII in lateral habenula mediates core symptoms of depression. Science. 341:1016–1020. 2013.PubMed/NCBI View Article : Google Scholar | |
Jacinto LR, Mata R, Novais A, Marques F and Sousa N: The habenula as a critical node in chronic stress-related anxiety. Exp Neurol. 289:46–54. 2017.PubMed/NCBI View Article : Google Scholar | |
Luco K: The relationship of the trigemino-cardiac reflex to sleep bruxism. Lupine Publishers LLC, Online Journal of Neurobiology and Brain Disorders, 2018. | |
Keskinruzgar A DDS, Kalenderoglu A MD, Yapici Yavuz G DDS, Koparal M DDS, Simsek A MD, Karadag AS MD and Utkun M DDS: Investigation of neurodegenerative and inflammatory processes in sleep bruxism. Cranio. 38:358–364. 2020.PubMed/NCBI View Article : Google Scholar | |
Kalenderoglu A, Sevgi-Karadag A, Celik M, Egilmez OB, Han-Almis B and Ozen ME: Can the retinal ganglion cell layer (GCL) volume be a new marker to detect neurodegeneration in bipolar disorder? Compr Psychiatry. 67:66–72. 2016.PubMed/NCBI View Article : Google Scholar | |
Kalenderoglu A, Çelik M, Sevgi-Karadag A and Egilmez OB: Optic coherence tomography shows inflammation and degeneration in major depressive disorder patients correlated with disease severity. J Affect Disord. 204:159–165. 2016.PubMed/NCBI View Article : Google Scholar | |
Minakuchi H, Fujisawa M, Abe Y, Iida T, Oki K, Okura K, Tanabe N and Nishiyama A: Managements of sleep bruxism in adult: A systematic review. Jpn Dent Sci Rev. 58:124–136. 2022.PubMed/NCBI View Article : Google Scholar | |
Bhattacharjee B, Saneja R, Bhatnagar A and Gupta P: Effect of dopaminergic agonist group of drugs in treatment of sleep bruxism: A systematic review. J Prosthet Dent. 127:709–715. 2022.PubMed/NCBI View Article : Google Scholar |