Nanoparticle‑based antiviral strategies to combat the influenza virus (Review)
- This article is part of the special Issue: Advance in detection, diagnosis and treatment of infectious diseases
- Authors:
- Clara Patricia Rios‑Ibarra
- Mauricio Salinas‑Santander
- Danielle Annette Orozco‑Nunnelly
- Jorge Bravo‑Madrigal
-
Affiliations: Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco (CIATEJ), Guadalajara, Jalisco 44270, Mexico, Research Department, School of Medicine Saltillo, Universidad Autonoma de Coahuila, Unidad Saltillo, Coahuila 25000, Mexico, Department of Biology, Valparaiso University, Valparaiso, IN 46383‑6493, USA - Published online on: February 21, 2024 https://doi.org/10.3892/br.2024.1753
- Article Number: 65
-
Copyright: © Rios‑Ibarra et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Khan I, Saeed K and Khan I: Nanoparticles: Properties, applications and toxicities. Arab J Chem. 12:908–931. 2019. | |
Haleem A, Javaid M, Singh RP, Rab S and Suman R: Applications of nanotechnology in medical field: A brief review. Glob Health J. 7:70–77. 2023. | |
Wang L, Hu C and Shao L: The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine. 12:1227–1249. 2017.PubMed/NCBI View Article : Google Scholar | |
Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, Brown LE and Kida H: Selecting and using the appropriate influenza vaccine for each individual. Viruses. 13(971)2021.PubMed/NCBI View Article : Google Scholar | |
Sarkar J, Das S, Aich S, Bhattacharyya P and Acharya K: Antiviral potential of nanoparticles for the treatment of Coronavirus infections. J Trace Elem Med Biol. 72(126977)2022.PubMed/NCBI View Article : Google Scholar | |
Moreira EA, Yamauchi Y and Matthias P: How influenza virus uses host cell pathways during uncoating. Cells. 10(1722)2021.PubMed/NCBI View Article : Google Scholar | |
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG and García-Sastre A: Influenza. Nat Rev Dis Primer. 4(3)2018.PubMed/NCBI View Article : Google Scholar | |
To J and Torres J: Viroporins in the influenza virus. Cells. 8(654)2019.PubMed/NCBI View Article : Google Scholar | |
Park JE and Ryu Y: Transmissibility and severity of influenza virus by subtype. Infect Genet Evol. 65:288–292. 2018.PubMed/NCBI View Article : Google Scholar | |
Hutchinson EC: Influenza virus. Trends Microbiol. 26:809–810. 2018.PubMed/NCBI View Article : Google Scholar | |
Gaitonde DY, Moore FC and Morgan MK: Influenza: Diagnosis and treatment. Am Fam Physician. 100:751–758. 2019.PubMed/NCBI | |
Centers for Disease Control and Prevention (CDC): Antiviral drugs for seasonal influenza. CDC, Atlanta, GA, 2022. | |
Javanian M, Barary M, Ghebrehewet S, Koppolu V, Vasigala V and Ebrahimpour S: A brief review of influenza virus infection. J Med Virol. 93:4638–4646. 2021.PubMed/NCBI View Article : Google Scholar | |
Wieczorek K, Szutkowska B and Kierzek E: Anti-influenza strategies based on nanoparticle applications. Pathogens. 9(1020)2020.PubMed/NCBI View Article : Google Scholar | |
Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani SJ, Esghaei M, et al: Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J Biomed Sci. 26(70)2019.PubMed/NCBI View Article : Google Scholar | |
Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M and Masoudi A: Nanoparticles and vaccine development. Pharm Nanotechnol. 8:6–21. 2020.PubMed/NCBI View Article : Google Scholar | |
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G and Plutino MR: Synthesis, chemical-physical characterization, and biomedical applications of functional gold nanoparticles: A review. Molecules. 26(5823)2021.PubMed/NCBI View Article : Google Scholar | |
Salazar-González JA, González-Ortega O and Rosales-Mendoza S: Gold nanoparticles and vaccine development. Expert Rev Vaccines. 14:1197–1211. 2015.PubMed/NCBI View Article : Google Scholar | |
Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM and Melander C: Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc. 130:6896–6897. 2008.PubMed/NCBI View Article : Google Scholar | |
Papp I, Sieben C, Ludwig K, Roskamp M, Böttcher C, Schlecht S, Herrmann A and Haag R: Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 6:2900–2906. 2010.PubMed/NCBI View Article : Google Scholar | |
Mikhailova EO: Gold nanoparticles: Biosynthesis and potential of biomedical application. J Funct Biomater. 12(70)2021.PubMed/NCBI View Article : Google Scholar | |
Li F, Huang Q, Zhou Z, Guan Q, Ye F, Huang B, Guo W and Liang XJ: Gold nanoparticles combat enveloped RNA virus by affecting organelle dynamics. Signal Transduct Target Ther. 8(285)2023.PubMed/NCBI View Article : Google Scholar | |
Wang C, Zhu W, Luo Y and Wang BZ: Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine. 14:1349–1360. 2018.PubMed/NCBI View Article : Google Scholar | |
Kim J, Yeom M, Lee T, Kim HO, Na W, Kang A, Lim JW, Park G, Park C, Song D and Haam S: Porous gold nanoparticles for attenuating infectivity of influenza A virus. J Nanobiotechnology. 18(54)2020.PubMed/NCBI View Article : Google Scholar | |
Xia Q, Huang J, Feng Q, Chen X, Liu X, Li X, Zhang T, Xiao S, Li H, Zhong Z and Xiao K: Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine. 14:6957–6970. 2019.PubMed/NCBI View Article : Google Scholar | |
Bimler L, Song AY, Le DT, Murphy Schafer A and Paust S: AuNP-M2e + sCpG vaccination of juvenile mice generates lifelong protective immunity to influenza A virus infection. Immun Ageing. 16(23)2019.PubMed/NCBI View Article : Google Scholar | |
Tao W, Hurst BL, Shakya AK, Uddin MJ, Ingrole RS, Hernandez-Sanabria M, Arya RP, Bimler L, Paust S, Tarbet EB and Gill HS: Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H3N2 and H5N1 influenza A viruses. Antiviral Res. 141:62–72. 2017.PubMed/NCBI View Article : Google Scholar | |
Tazaki T, Tabata K, Ainai A, Ohara Y, Kobayashi S, Ninomiya T, Orba Y, Mitomo H, Nakano T, Hasegawa H, et al: Shape-dependent adjuvanticity of nanoparticle-conjugated RNA adjuvants for intranasal inactivated influenza vaccines. RSC Adv. 8:16527–16536. 2018.PubMed/NCBI View Article : Google Scholar | |
Aarreberg LD, Esser-Nobis K, Driscoll C, Shuvarikov A, Roby JA and Gale M Jr: Interleukin-1β induces mtDNA release to activate innate immune signaling via cGAS-STING. Mol Cell. 74:801–815.e6. 2019.PubMed/NCBI View Article : Google Scholar | |
Johnston SC, Lin KL, Connor JH, Ruthel G, Goff A and Hensley LE: In vitro inhibition of monkeypox virus production and spread by interferon-β. Virol J. 9(5)2012.PubMed/NCBI View Article : Google Scholar | |
Puthothu B, Bierbaum S, Kopp MV, Forster J, Heinze J, Weckmann M, Krueger M and Heinzmann A: Association of TNF-alpha with severe respiratory syncytial virus infection and bronchial asthma. Pediatr Allergy Immunol. 20:157–163. 2009.PubMed/NCBI View Article : Google Scholar | |
Sun Y, Jiang X, Liu Y, Liu D, Chen C, Lu C, Zhuang S, Kumar A and Liu J: Recent advances in Cu(II)/Cu(I)-MOFs based nano-platforms for developing new nano-medicines. J Inorg Biochem. 225(111599)2021.PubMed/NCBI View Article : Google Scholar | |
Grigore ME, Biscu ER, Holban AM, Gestal MC and Grumezescu AM: Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel). 9(75)2016.PubMed/NCBI View Article : Google Scholar | |
Chang YN, Zhang M, Xia L, Zhang J and Xing G: The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel). 5:2850–2871. 2012. | |
Ali ZI, Ghazy OA, Meligi G, Saleh HH and Bekhit M: Radiation-induced synthesis of copper/poly(vinyl alcohol) nanocomposites and their catalytic activity. Adv Polym Technol. 37:365–375. 2018. | |
Ermini ML and Voliani V: Antimicrobial nano-agents: The copper age. ACS Nano. 15:6008–6029. 2021.PubMed/NCBI View Article : Google Scholar | |
Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A and Banin E: Understanding the antibacterial mechanism of CuO nanoparticles: Revealing the route of induced oxidative stress. Small. 8:3326–3337. 2012.PubMed/NCBI View Article : Google Scholar | |
Ha T, Pham TTM, Kim M, Kim YH, Park JH, Seo JH, Kim KM and Ha E: Antiviral activities of high energy E-beam induced copper nanoparticles against H1N1 influenza virus. Nanomaterials (Basel). 12(268)2022.PubMed/NCBI View Article : Google Scholar | |
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M and Ilyechova EY: The crossroads between host copper metabolism and influenza infection. Int J Mol Sci. 22(5498)2021.PubMed/NCBI View Article : Google Scholar | |
Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N and Cioffi N: Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials (Basel). 10(802)2020.PubMed/NCBI View Article : Google Scholar | |
Gurunathan S, Park JH, Han JW and Kim JH: Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int J Nanomedicine. 10:4203–4223. 2015.PubMed/NCBI View Article : Google Scholar | |
Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk JM, Lau GK and Che CM: Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 13:253–262. 2008.PubMed/NCBI | |
Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V and Galdiero M: Silver nanoparticles as potential antiviral agents. Molecules. 16:8894–8918. 2011.PubMed/NCBI View Article : Google Scholar | |
Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T and Ishihara M: Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett. 8(93)2013.PubMed/NCBI View Article : Google Scholar | |
Feng F, Sakoda Y, Ohyanagi T, Nagahori N, Shibuya H, Okamastu M, Miura N, Kida H and Nishimura S: Novel thiosialosides tethered to metal nanoparticles as potent influenza A virus haemagglutinin blockers. Antivir Chem Chemother. 23:59–65. 2013.PubMed/NCBI View Article : Google Scholar | |
Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y, Casola A and Garofalo R: Antiviral and immunomodulatory activity of silver nanoparticles in experimental RSV infection. Viruses. 11(732)2019.PubMed/NCBI View Article : Google Scholar | |
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H and Cho JY: Silver nanoparticles as potential antiviral agents. Pharmaceutics. 13(2034)2021.PubMed/NCBI View Article : Google Scholar | |
Meineke R, Rimmelzwaan G and Elbahesh H: Influenza virus infections and cellular kinases. Viruses. 11(171)2019.PubMed/NCBI View Article : Google Scholar | |
Trefry JC and Wooley DP: Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J Biomed Nanotechnol. 9:1624–1635. 2013.PubMed/NCBI View Article : Google Scholar | |
Tripathi S, White MR and Hartshorn KL: The amazing innate immune response to influenza A virus infection. Innate Immun. 21:73–98. 2015.PubMed/NCBI View Article : Google Scholar | |
Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, O'Connor ML, Marappan M, Zhao X, Miao Y, et al: Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomedicine. 8:4103–4113. 2013.PubMed/NCBI View Article : Google Scholar | |
Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L, Wang H, Xia H and Zhu B: Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl Mater Interfaces. 8:24385–24393. 2016.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Zhang M, Song H and Yu C: Silica-based nanoparticles for biomedical applications: From nanocarriers to biomodulators. Acc Chem Res. 53:1545–1556. 2020.PubMed/NCBI View Article : Google Scholar | |
Häffner SM, Parra-Ortiz E, Browning KL, Jørgensen E, Skoda MWA, Montis C, Li X, Berti D, Zhao D and Malmsten M: Membrane interactions of virus-like mesoporous silica nanoparticles. ACS Nano. 15:6787–6800. 2021.PubMed/NCBI View Article : Google Scholar | |
Maurer-Jones MA, Lin YS and Haynes CL: Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano. 4:3363–3373. 2010.PubMed/NCBI View Article : Google Scholar | |
Cheng K, El-Boubbou K and Landry CC: Binding of HIV-1 gp120 glycoprotein to silica nanoparticles modified with CD4 glycoprotein and CD4 peptide fragments. ACS Appl Mater Interfaces. 4:235–243. 2012.PubMed/NCBI View Article : Google Scholar | |
Tng DJH and Low JGH: Current status of silica-based nanoparticles as therapeutics and its potential as therapies against viruses. Antiviral Res. 210(105488)2023.PubMed/NCBI View Article : Google Scholar | |
Neuhaus V, Schwarz K, Klee A, Seehase S, Förster C, Pfennig O, Jonigk D, Fieguth HG, Koch W, Warnecke G, et al: Functional testing of an inhalable nanoparticle based influenza vaccine using a human precision cut lung slice technique. PLoS One. 8(e71728)2013.PubMed/NCBI View Article : Google Scholar | |
Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I and Tschopp J: Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci USA. 107:19449–19454. 2010.PubMed/NCBI View Article : Google Scholar | |
AbouAitah K, Swiderska-Sroda A, Kandeil A, Salman AMM, Wojnarowicz J, Ali MA, Opalinska A, Gierlotka S, Ciach T and Lojkowski W: Virucidal action against avian influenza H5N1 virus and immunomodulatory effects of nanoformulations consisting of mesoporous silica nanoparticles loaded with natural prodrugs. Int J Nanomedicine. 15:5181–5202. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang H, Chen L, Li R, Lv C, Xu Y and Xiong Y: Polydopamine-coated mesoporous silica nanoparticles co-loaded with Ziyuglycoside I and Oseltamivir for synergistic treatment of viral pneumonia. Int J Pharm. 645(123412)2023.PubMed/NCBI View Article : Google Scholar | |
Lakshmipriya T and Gopinath SCB: 1-Introduction to nanoparticles and analytical devices. In: Nanoparticles in Analytical and Medical Devices. Gopinath SCB and Gang F (eds.) Elsevier, pp1-29, 2021. | |
Attia GH, Moemen YS, Youns M, Ibrahim AM, Abdou R and El Raey MA: Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf B Biointerfaces. 203(111724)2021.PubMed/NCBI View Article : Google Scholar | |
Singh TA, Sharma A, Tejwan N, Ghosh N, Das J and Sil PC: A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci. 295(102495)2021.PubMed/NCBI View Article : Google Scholar | |
Poon WL, Alenius H, Ndika J, Fortino V, Kolhinen V, Meščeriakovas A, Wang M, Greco D, Lähde A, Jokiniemi J, et al: Nano-sized zinc oxide and silver, but not titanium dioxide, induce innate and adaptive immunity and antiviral response in differentiated THP-1 cells. Nanotoxicology. 11:936–951. 2017.PubMed/NCBI View Article : Google Scholar | |
Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N and Parajuli N: Current research on zinc oxide nanoparticles: Synthesis, Characterization, and biomedical applications. Nanomaterials (Basel). 12(3066)2022.PubMed/NCBI View Article : Google Scholar | |
te Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ and van Hemert MJ: Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 6(e1001176)2010.PubMed/NCBI View Article : Google Scholar | |
Imani SM, Ladouceur L, Marshall T, Maclachlan R, Soleymani L and Didar TF: Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano. 14:12341–12369. 2020.PubMed/NCBI View Article : Google Scholar | |
Shahabadi N, Zendehcheshm S and Khademi F: Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol Rep (Amst). 30(e00615)2021.PubMed/NCBI View Article : Google Scholar | |
Zhang T, Qi M, Wu Q, Xiang P, Tang D and Li Q: Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front Nutr. 10(1183487)2023.PubMed/NCBI View Article : Google Scholar | |
Ferro C, Florindo HF and Santos HA: Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv Healthc Mater. 10(2100598)2021.PubMed/NCBI View Article : Google Scholar | |
Cheng Z, Zhi X, Sun G, Guo W, Huang Y, Sun W, Tian X, Zhao F and Hu K: Sodium selenite suppresses hepatitis B virus transcription and replication in human hepatoma cell lines. J Med Virol. 88:653–663. 2016.PubMed/NCBI View Article : Google Scholar | |
Li Y, Lin Z, Guo M, Xia Y, Zhao M, Wang C, Xu T, Chen T and Zhu B: Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. Int J Nanomedicine. 12:5733–5743. 2017.PubMed/NCBI View Article : Google Scholar | |
Kopel J, Fralick J and Reid TW: The potential antiviral effects of selenium nanoparticles and coated surfaces. Antibiotics (Basel). 11(1683)2022.PubMed/NCBI View Article : Google Scholar | |
Liu X, Chen D, Su J, Zheng R, Ning Z, Zhao M, Zhu B and Li Y: Selenium nanoparticles inhibited H1N1 influenza virus-induced apoptosis by ROS-mediated signaling pathways. RSC Adv. 12:3862–3870. 2022.PubMed/NCBI View Article : Google Scholar | |
Xu T, Lai J, Su J, Chen D, Zhao M, Li Y and Zhu B: Inhibition of H3N2 influenza virus induced apoptosis by selenium nanoparticles with chitosan through ROS-mediated signaling pathways. ACS Omega. 8:8473–8480. 2023.PubMed/NCBI View Article : Google Scholar | |
Banoth B and Cassel SL: Mitochondria in innate immune signaling. Transl Res. 202:52–68. 2018.PubMed/NCBI View Article : Google Scholar | |
Li Y, Lin Z, Guo M, Zhao M, Xia Y, Wang C, Xu T and Zhu B: Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways. Int J Nanomedicine. 13:2005–2016. 2018.PubMed/NCBI View Article : Google Scholar | |
Khanna M, Sharma S, Kumar B and Rajput R: Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development. Biomed Res Int. 2014(546274)2014.PubMed/NCBI View Article : Google Scholar | |
Cilento ME, Kirby KA and Sarafianos SG: Avoiding drug resistance in HIV reverse transcriptase. Chem Rev. 121:3271–3296. 2021.PubMed/NCBI View Article : Google Scholar | |
Draz MS and Shafiee H: Applications of gold nanoparticles in virus detection. Theranostics. 8:1985–2017. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Schepens B, Nuhn L, Saelens X, Schotsaert M, Callewaert N, De Rycke R, Zhang Q, Moins S, Benali S, et al: Influenza-binding sialylated polymer coated gold nanoparticles prepared via RAFT polymerization and reductive amination. Chem Commun (Camb). 52:3352–3355. 2016.PubMed/NCBI View Article : Google Scholar | |
Corti D, Cameroni E, Guarino B, Kallewaard NL, Zhu Q and Lanzavecchia A: Tackling influenza with broadly neutralizing antibodies. Curr Opin Virol. 24:60–69. 2017.PubMed/NCBI View Article : Google Scholar | |
Joyce MG, Wheatley AK, Thomas PV, Chuang GY, Soto C, Bailer RT, Druz A, Georgiev IS, Gillespie RA, Kanekiyo M, et al: Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A viruses. Cell. 166:609–623. 2016.PubMed/NCBI View Article : Google Scholar | |
Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, et al: Highly conserved protective epitopes on influenza B viruses. Science. 337:1343–1348. 2012.PubMed/NCBI View Article : Google Scholar | |
Kang SM, Song JM and Compans RW: Novel vaccines against influenza viruses. Virus Res. 162:31–38. 2011.PubMed/NCBI View Article : Google Scholar | |
Nesovic LD, Roach CJ, Joshi G and Gill HS: Delivery of gold nanoparticle-conjugated M2e influenza vaccine in mice using coated microneedles. Biomater Sci. 11:5859–5871. 2023.PubMed/NCBI View Article : Google Scholar | |
Chen L and Liang J: An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C Mater Biol Appl. 112(110924)2020.PubMed/NCBI View Article : Google Scholar | |
Nagy A and Robbins NL: The hurdles of nanotoxicity in transplant nanomedicine. Nanomedicine (Lond). 14:2749–2762. 2019.PubMed/NCBI View Article : Google Scholar | |
Tagami T and Ozeki T: Recent trends in clinical trials related to carrier-based drugs. J Pharm Sci. 106:2219–2226. 2017.PubMed/NCBI View Article : Google Scholar | |
Gopal J, Muthu M and Sivanesan I: A comprehensive survey on the expediated anti-COVID-19 options enabled by metal complexes-tasks and trials. Molecules. 28(3354)2023.PubMed/NCBI View Article : Google Scholar | |
Abukabda AB, Stapleton PA and Nurkiewicz TR: Metal nanomaterial toxicity variations within the vascular system. Curr Environ Health Rep. 3:379–391. 2016.PubMed/NCBI View Article : Google Scholar |