1
|
Whiteford HA, Ferrari AJ, Degenhardt L,
Feigin V and Vos T: The global burden of mental, neurological and
substance use disorders: An analysis from the global burden of
disease study 2010. PLoS One. 10(e0116820)2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Velligan DI and Rao S: The epidemiology
and global burden of schizophrenia. J Clin Psychiatry.
84(MS21078COM5)2023.PubMed/NCBI View Article : Google Scholar
|
3
|
Rayan A and Obiedate K: The correlates of
quality of life among jordanian patients with schizophrenia. J Am
Psychiatr Nurses Assoc. 23:404–413. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Saab R, Moussaoui D, Tabet CC, El Hamaoui
Y, Salamoun MM, Mneimneh ZN and Karam EG: Epidemiology of
schizophrenia and related disorders in the Arab world. Arab J
Psychiatry. 22:1–9. 2011.
|
5
|
Williams U, Jones DJ and Reddon JR (eds):
Police response to mental health in Canada. Canadian Scholars'
Press, pp357, 2019.
|
6
|
Cardno AG, Marshall EJ, Coid B, Macdonald
AM, Ribchester TR, Davies NJ, Venturi P, Jones LA, Lewis SW, Sham
PC, et al: Heritability estimates for psychotic disorders: The
Maudsley Twin Psychosis Series. Arch Gen Psychiatry. 56:162–168.
1999.PubMed/NCBI View Article : Google Scholar
|
7
|
Wu Y, Cao H, Baranova A, Huang H, Li S,
Cai L, Rao S, Dai M, Xie M, Dou Y, et al: Multi-trait analysis for
genome-wide association study of five psychiatric disorders. Transl
Psychiatry. 10(209)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Momozawa Y and Mizukami K: Unique roles of
rare variants in the genetics of complex diseases in humans. J Hum
Genet. 66:11–23. 2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Visscher PM, Wray NR, Zhang Q, Sklar P,
McCarthy MI, Brown MA and Yang J: 10 Years of GWAS discovery:
Biology, function, and translation. Am J Hum Genet. 101:5–22.
2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Mullins N, Forstner AJ, O'Connell KS,
Coombes B, Coleman JRI, Qiao Z, Als TD, Bigdeli TB, Børte S, Bryois
J, et al: Genome-wide association study of more than 40,000 bipolar
disorder cases provides new insights into the underlying biology.
Nat Genet. 53:817–829. 2021.PubMed/NCBI View Article : Google Scholar
|
11
|
Cano-Gamez E and Trynka G: From GWAS to
function: Using functional genomics to identify the mechanisms
underlying complex diseases. Front Genet. 11(424)2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao
YN, Su BW, Gao P, Man ZY, Luo YY, et al: Schizophrenia in the
genetic era: A review from development history, clinical features
and genomic research approaches to insights of susceptibility
genes. Metab Brain Dis. 39:147–171. 2024.PubMed/NCBI View Article : Google Scholar
|
13
|
Heinzer L and Curtis D: What have genetic
studies of rare sequence variants taught us about the aetiology of
schizophrenia? J Transl Genet Genom. 8:1–12. 2024.
|
14
|
Owen MJ, Legge SE, Rees E, Walters JTR and
O'Donovan MC: Genomic findings in schizophrenia and their
implications. Mol Psychiatry. 28:3638–3647. 2023.PubMed/NCBI View Article : Google Scholar
|
15
|
Legge SE, Santoro ML, Periyasamy S,
Okewole A, Arsalan A and Kowalec K: Genetic architecture of
schizophrenia: A review of major advancements. Psychol Med.
51:2168–2177. 2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Rodgers MD, Mead MJ, McWhorter CA, Ebeling
MD, Shary JR, Newton DA, Baatz JE, Gregoski MJ, Hollis BW and
Wagner CL: Vitamin D and child neurodevelopment-a post hoc
analysis. Nutrients. 15(4250)2023.PubMed/NCBI View Article : Google Scholar
|
17
|
Bivona G, Gambino CM, Iacolino G and
Ciaccio M: Vitamin D and the nervous system. Neurol Res.
41:827–835. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Eyles DW: Vitamin D: Brain and behavior.
JBMR Plus. 5(e10419)2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Ye X, Zhou Q, Ren P, Xiang W and Xiao L:
The synaptic and circuit functions of vitamin D in neurodevelopment
disorders. Neuropsychiatr Dis Treat. 19:1515–1530. 2023.PubMed/NCBI View Article : Google Scholar
|
20
|
Di Somma C, Scarano E, Barrea L,
Zhukouskaya VV, Savastano S, Mele C, Scacchi M, Aimaretti G, Colao
A and Marzullo P: Vitamin D and neurological diseases: An endocrine
view. Int J Mol Sci. 18(2482)2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Cui X, Gooch H, Petty A, McGrath JJ and
Eyles D: Vitamin D and the brain: Genomic and non-genomic actions.
Mol Cell Endocrinol. 453:131–143. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Lally J and Gaughran F: Vitamin D in
schizophrenia and depression: A clinical review. BJPsych Adv.
25:240–248. 2019.
|
23
|
Cui X and Eyles DW: Vitamin D and the
central nervous system: Causative and preventative mechanisms in
brain disorders. Nutrients. 14(4353)2022.PubMed/NCBI View Article : Google Scholar
|
24
|
Voltan G, Cannito M, Ferrarese M, Ceccato
F and Camozzi V: Vitamin D: An overview of gene regulation, ranging
from metabolism to genomic effects. Genes (Basel).
14(1691)2023.PubMed/NCBI View Article : Google Scholar
|
25
|
Bahrami A, Sadeghnia HR, Tabatabaeizadeh
SA, Bahrami-Taghanaki H, Behboodi N, Esmaeili H, Ferns GA, Mobarhan
MG and Avan A: Genetic and epigenetic factors influencing vitamin D
status. J Cell Physiol. 233:4033–4043. 2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Sepulveda-Villegas M, Elizondo-Montemayor
L and Trevino V: Identification and analysis of 35 genes associated
with vitamin D deficiency: A systematic review to identify genetic
variants. J Steroid Biochem Mol Biol. 196(105516)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Hyppönen E, Vimaleswaran KS and Zhou A:
Genetic determinants of 25-hydroxyvitamin D concentrations and
their relevance to public health. Nutrients.
14(4408)2022.PubMed/NCBI View Article : Google Scholar
|
28
|
Slater NA, Rager ML, Havrda DE and
Harralson AF: Genetic variation in CYP2R1 and GC genes associated
with vitamin D deficiency status. J Pharm Pract. 30:31–36.
2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhu JG, Ochalek JT, Kaufmann M, Jones G
and DeLuca HF: CYP2R1 is a major, but not exclusive, contributor to
25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci USA.
110:15650–15655. 2013.PubMed/NCBI View Article : Google Scholar
|
30
|
Bailey R, Cooper JD, Zeitels L, Smyth DJ,
Yang JH, Walker NM, Hyppönen E, Dunger DB, Ramos-Lopez E, Badenhoop
K, et al: Association of the vitamin D metabolism gene CYP27B1 with
type 1 diabetes. Diabetes. 56:2616–2621. 2007.PubMed/NCBI View Article : Google Scholar
|
31
|
Carvalho IS, Gonçalves CI, Almeida JT,
Azevedo T, Martins T, Rodrigues FJ and Lemos MC: Association of
vitamin D pathway genetic variation and thyroid cancer. Genes
(Basel). 10(572)2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Yan J, Feng J, Craddock N, Jones IR, Cook
EH Jr, Goldman D, Heston LL, Chen J, Burkhart P, Li W, et al:
Vitamin D receptor variants in 192 patients with schizophrenia and
other psychiatric diseases. Neurosci Lett. 380:37–41.
2005.PubMed/NCBI View Article : Google Scholar
|
33
|
Handoko HY, Nancarrow DJ, Mowry BJ and
McGrath JJ: Polymorphisms in the vitamin D receptor and their
associations with risk of schizophrenia and selected anthropometric
measures. Am J Hum Biol. 18:415–417. 2006.PubMed/NCBI View Article : Google Scholar
|
34
|
Lins TC, Vieira RG, Grattapaglia D and
Pereira RW: Population analysis of vitamin D receptor polymorphisms
and the role of genetic ancestry in an admixed population. Genet
Mol Biol. 34:377–385. 2011.PubMed/NCBI View Article : Google Scholar
|
35
|
First MB, Rebello TJ, Keeley JW, Bhargava
R, Dai Y, Kulygina M, Matsumoto C, Robles R, Stona AC and Reed GM:
Do mental health professionals use diagnostic classifications the
way we think they do? A global survey. World Psychiatry.
17:187–195. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Medrano RFV and De Oliveira CA: Guidelines
for the tetra-primer ARMS-PCR technique development. Mol
Biotechnol. 56:599–608. 2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Luvsannyam E, Jain MS, Pormento MKL,
Siddiqui H, Balagtas ARA, Emuze BO and Poprawski T: Neurobiology of
schizophrenia: A comprehensive review. Cureus.
14(e23959)2022.PubMed/NCBI View Article : Google Scholar
|
38
|
Wahbeh MH and Avramopoulos D:
Gene-environment interactions in schizophrenia: A literature
review. Genes (Basel). 12(1850)2021.PubMed/NCBI View Article : Google Scholar
|
39
|
Schmitt A, Falkai P and Papiol S:
Neurodevelopmental disturbances in schizophrenia: Evidence from
genetic and environmental factors. J Neural Transm (Vienna).
130:195–205. 2023.PubMed/NCBI View Article : Google Scholar
|
40
|
Watanabe K, Stringer S, Frei O, Umićević
Mirkov M, de Leeuw C, Polderman TJC, van der Sluis S, Andreassen
OA, Neale BM and Posthuma D: A global overview of pleiotropy and
genetic architecture in complex traits. Nat Genet. 51:1339–1348.
2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Tam V, Patel N, Turcotte M, Bossé Y, Paré
G and Meyre D: Benefits and limitations of genome-wide association
studies. Nat Rev Genet. 20:467–484. 2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Cui X, McGrath JJ, Burne THJ and Eyles DW:
Vitamin D and schizophrenia: 20 Years on. Mol Psychiatry.
26:2708–2720. 2021.PubMed/NCBI View Article : Google Scholar
|
43
|
Roy NM, Al-Harthi L, Sampat N, Al-Mujaini
R, Mahadevan S, Al Adawi S, Essa MM, Al Subhi L, Al-Balushi B and
Qoronfleh MW: Impact of vitamin D on neurocognitive function in
dementia, depression, schizophrenia and ADHD. Front Biosci
(Landmark Ed). 26:566–611. 2021.PubMed/NCBI View
Article : Google Scholar
|
44
|
Zhu JL, Luo WW, Cheng X, Li Y, Zhang QZ
and Peng WX: Vitamin D deficiency and schizophrenia in adults: A
systematic review and meta-analysis of observational studies.
Psychiatry Res. 288(112959)2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Asadzadeh Manjili F, Kalantar SM,
Arsang-Jang S, Ghafouri-Fard S, Taheri M and Sayad A: Upregulation
of vitamin D-related genes in schizophrenic patients.
Neuropsychiatr Dis Treat. 14:2583–2591. 2018.PubMed/NCBI View Article : Google Scholar
|
46
|
Dastani Z, Li R and Richards B: Genetic
regulation of vitamin D levels. Calcif Tissue Int. 92:106–117.
2013.PubMed/NCBI View Article : Google Scholar
|
47
|
Cheng JB, Motola DL, Mangelsdorf DJ and
Russell DW: De-orphanization of cytochrome P450 2R1: A microsomal
vitamin D 25-hydroxilase. J Biol Chem. 278:38084–38093.
2003.PubMed/NCBI View Article : Google Scholar
|
48
|
Wang Q, Lin Z, Chen H, Ma T and Pan B:
Effect of cytochrome p450 family 2 subfamily R member 1 variants on
the predisposition of coronary heart disease in the Chinese Han
population. Front Cardiovasc Med. 8(652729)2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Ramos-Lopez E, Brück P, Jansen T, Herwig J
and Badenhoop K: CYP2R1 (vitamin D 25-hydroxylase) gene is
associated with susceptibility to type 1 diabetes and vitamin D
levels in Germans. Diabetes Metab Res Rev. 23:631–636.
2007.PubMed/NCBI View Article : Google Scholar
|
50
|
Christakos S, Dhawan P, Verstuyf A,
Verlinden L and Carmeliet G: Vitamin D: Metabolism, molecular
mechanism of action, and pleiotropic effects. Physiol Rev.
96:365–408. 2016.PubMed/NCBI View Article : Google Scholar
|
51
|
Bikle DD: Vitamin D metabolism, mechanism
of action, and clinical applications. Chem Biol. 21:319–329.
2014.PubMed/NCBI View Article : Google Scholar
|
52
|
Lee S, Kasif S, Weng Z and Cantor CR:
Quantitative analysis of single nucleotide polymorphisms within
copy number variation. PLoS One. 3(e3906)2008.PubMed/NCBI View Article : Google Scholar
|
53
|
Graffelman J, Jain D and Weir B: A
genome-wide study of Hardy-Weinberg equilibrium with next
generation sequence data. Hum Genet. 136:727–741. 2017.PubMed/NCBI View Article : Google Scholar
|
54
|
Wang J and Shete S: Testing departure from
Hardy-Weinberg proportions. Methods Mol Biol. 850:77–102.
2012.PubMed/NCBI View Article : Google Scholar
|
55
|
Valdivielso JM and Fernandez E: Vitamin D
receptor polymorphisms and diseases. Clin Chim Acta. 371:1–12.
2006.PubMed/NCBI View Article : Google Scholar
|
56
|
Kuningas M, Mooijaart SP, Jolles J,
Slagboom PE, Westendorp RGJ and Heemst D Van: VDR gene variants
associate with cognitive function and depressive symptoms in old
age. Neurobiol Aging. 30:466–473. 2009.PubMed/NCBI View Article : Google Scholar
|
57
|
Liu N, Zhang T, Ma L, Wei W, Li Z, Jiang
X, Sun J, Pei H and Li H: Vitamin D receptor gene polymorphisms and
risk of Alzheimer disease and mild cognitive impairment: A
systematic review and meta-analysis. Adv Nutr. 12:2255–2264.
2021.PubMed/NCBI View Article : Google Scholar
|
58
|
Zhang Z, Li S, Yu L and Liu J:
Polymorphisms in vitamin D receptor genes in association with
childhood autism spectrum disorder. Dis Markers.
2018(7862892)2018.PubMed/NCBI View Article : Google Scholar
|
59
|
Eyles DW, Trzaskowski M, Vinkhuyzen AAE,
Mattheisen M, Meier S, Gooch H, Anggono V, Cui X, Tan MC, Burne
THJ, et al: The association between neonatal vitamin D status and
risk of schizophrenia. Sci Rep. 8(17692)2018.PubMed/NCBI View Article : Google Scholar
|
60
|
Eyles DW, Burne THJ and McGrath JJ:
Vitamin D, effects on brain development, adult brain function and
the links between low levels of vitamin D and neuropsychiatric
disease. Front Neuroendocrinol. 34:47–64. 2013.PubMed/NCBI View Article : Google Scholar
|
61
|
Crews M, Lally J, Gardner-Sood P, Howes O,
Bonaccorso S, Smith S, Murray RM, Di Forti M and Gaughran F:
Vitamin D deficiency in first episode psychosis: A case-control
study. Schizophr Res. 150:533–537. 2013.PubMed/NCBI View Article : Google Scholar
|
62
|
Shahini N, Jazayeri SMMZ, Jahanshahi R and
Charkazi A: Relationship of serum homocysteine and vitamin D with
positive, negative, and extrapyramidal symptoms in schizophrenia: A
case-control study in Iran. BMC Psychiatry. 22(681)2022.PubMed/NCBI View Article : Google Scholar
|