1
|
Rodriguez-Otero P, Paiva B and San-Miguel
JF: Roadmap to cure multiple myeloma. Cancer Treat Rev.
100(102284)2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Huynh M, Pak C, Markovina S, Callander NS,
Chng KS, Wuerzberger-Davis SM, Bakshi DD, Kink JA, Hematti P, Hope
C, et al: Hyaluronan and proteoglycan link protein 1 (HAPLN1)
activates bortezomib-resistant NF-κB activity and increases drug
resistance in multiple myeloma. J Biol Chem. 293:2452–2465.
2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Dingli D, Ailawadhi S, Bergsagel PL, Buadi
FK, Dispenzieri A, Fonseca R, Gertz MA, Gonsalves WI, Hayman SR,
Kapoor P, et al: Therapy for relapsed multiple myeloma: Guidelines
from the mayo stratification for myeloma and risk-adapted therapy.
Mayo Clin Proc. 92:578–598. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Abdi J, Rastgoo N, Li L, Chen W and Chang
H: Role of tumor suppressor p53 and micro-RNA interplay in multiple
myeloma pathogenesis. J Hematol Oncol. 10(169)2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Li Y, Zhao Z, Sun D and Li Y: Novel long
noncoding RNA LINC02323 promotes cell growth and migration of
ovarian cancer via TGF-β receptor 1 by miR-1343-3p. J Clin Lab
Anal. 35(e23651)2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Stamato MA, Juli G, Romeo E, Ronchetti D,
Arbitrio M, Caracciolo D, Neri A, Tagliaferri P, Tassone P and
Amodio N: Inhibition of EZH2 triggers the tumor suppressive miR-29b
network in multiple myeloma. Oncotarget. 8:106527–106537.
2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen X, Wang J, Xie F, Mou T, Zhong P, Hua
H, Liu P and Yang Q: Long noncoding RNA LINC01559 promotes
pancreatic cancer progression by acting as a competing endogenous
RNA of miR-1343-3p to upregulate RAF1 expression. Aging (Albany
NY). 12:14452–14466. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Wang X and Zhang Z: X. Cao X. Salidroside
inhibited the proliferation of gastric cancer cells through
up-regulating tumor suppressor miR-1343-3p and down-regulating
MAP3K6/MMP24 signal molecules. Cancer Biol Ther.
25(2322206)2024.PubMed/NCBI View Article : Google Scholar
|
9
|
Lin W, Mo CQ, Kong LJ, Chen L, Wu KL and
Wu X: FTO-mediated epigenetic upregulation of LINC01559 confers
cell resistance to docetaxel in breast carcinoma by suppressing
miR-1343-3p. Kaohsiung J Med Sci. 39:873–882. 2023.PubMed/NCBI View Article : Google Scholar
|
10
|
Ge P, Chen X, Liu J, Jing R, Zhang X and
Li H: Hsa_circ_0088036 promotes nonsmall cell lung cancer
progression by regulating miR-1343-3p/Bcl-3 axis through
TGFβ/Smad3/EMT signaling. Mol Carcinog. 62:1073–1085.
2023.PubMed/NCBI View
Article : Google Scholar
|
11
|
Li H, Liu J, Lai Y, Huang S, Zheng L and
Fan N: LINC01559 promotes colorectal cancer via sponging
miR-1343-3p to modulate PARP1/PTEN/AKT pathway. Pathol Res Pract.
224(153521)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Zhao L, Song X, Guo Y, Ding N, Wang T and
Huang L: Long non-coding RNA SNHG3 promotes the development of
non-small cell lung cancer via the miR-1343-3p/NFIX pathway. Int J
Mol Med. 48(147)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Qi J, Wang Z, Zhao Z and Liu L: EIF3J-AS1
promotes glioma cell growth via up-regulating ANXA11 through
sponging miR-1343-3p. Cancer Cell Int. 20(428)2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Qin Y, Sun W, Wang Z, Dong W, He L, Zhang
T, Shao L and Zhang H: ATF2-Induced lncRNA GAS8-AS1 promotes
autophagy of thyroid cancer cells by targeting the miR-187-3p/ATG5
and miR-1343-3p/ATG7 Axes. Mol Ther Nucleic Acids. 22:584–600.
2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Li G, Zhang T, Huang K, Zhu Y, Xu K, Gu J,
Huang S, Gu C, Zhan R and Shen J: Long noncoding RNA GAS8-AS1: A
novel biomarker in human diseases. Biomed Pharmacother.
139(111572)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhang W, He R, Yang W, Zhang Y, Yuan Q,
Wang J, Liu Y, Chen S, Zhang S, Zhang W, et al: Autophagic Schwann
cells promote perineural invasion mediated by the NGF/ATG7
paracrine pathway in pancreatic cancer. J Exp Clin Cancer Res.
41(48)2022.PubMed/NCBI View Article : Google Scholar
|
17
|
Lee IH, Kawai Y, Fergusson MM, Rovira II,
Bishop AJ, Motoyama N, Cao L and Finkel T: Atg7 modulates p53
activity to regulate cell cycle and survival during metabolic
stress. Science. 336:225–228. 2021.PubMed/NCBI View Article : Google Scholar
|
18
|
Carroll RG and Martin SJ: Autophagy in
multiple myeloma: What makes you stronger can also kill you. Cancer
Cell. 23:425–426. 2013.PubMed/NCBI View Article : Google Scholar
|
19
|
Kozalak G and Koşar A: Autophagy-related
mechanisms for treatment of multiple myeloma. Cancer Drug Resist.
6:838–857. 2023.PubMed/NCBI View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
21
|
Kim H, Yang JM, Jin Y, Jheon S, Kim K, Lee
CT, Chung JH and Paik JH: MicroRNA expression profiles and
clinicopathological implications in lung adenocarcinoma according
to EGFR, KRAS, and ALK status. Oncotarget. 8:8484–8498.
2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Yuan T, Huang X, Woodcock M, Du M, Dittmar
R, Wang Y, Tsai S, Kohli M, Boardman L, Patel T and Wang L: Plasma
extracellular RNA profiles in healthy and cancer patients. Sci Rep.
6(19413)2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Rodriguez-Otero P, van de Donk NWCJ,
Pillarisetti K, Cornax I, Vishwamitra D, Gray K, Hilder B, Tolbert
J, Renaud T, Masterson T, et al: GPRC5D as a novel target for the
treatment of multiple myeloma: A narrative review. Blood Cancer J.
14(24)2024.PubMed/NCBI View Article : Google Scholar
|
24
|
Klimaszyk K, Bednarek-Rajewska K, Svarrre
Nielsen H, Wender Ozegowska E and Kedzia M: Significance of
multiple myeloma oncogene 1 immunohistochemistry in chronic
endometritis detection in patients with recurrent pregnancy losses:
An observational study. J Physiol Pharmacol. 74:2023.PubMed/NCBI View Article : Google Scholar
|
25
|
Caserta S, Stagno F, Gangemi S and Allegra
A: Highlights on the Effects of Non-Coding RNAs in the
Osteonecrosis of the Jaw. Int J Mol Sci. 25(1598)2024.PubMed/NCBI View Article : Google Scholar
|
26
|
Xu L and Wu S: New diagnostic strategy for
multiple myeloma: A review. Medicine (Baltimore).
102(e36660)2023.PubMed/NCBI View Article : Google Scholar
|
27
|
Gong L, Qiu L and Hao M: Novel insights
into the initiation, evolution, and progression of multiple myeloma
by multi-omics investigation. Cancers (Basel).
16(498)2024.PubMed/NCBI View Article : Google Scholar
|
28
|
Michels TC and Petersen KE: Multiple
Myeloma: Diagnosis and Treatment. Am Fam Physician. 95:373–383.
2017.PubMed/NCBI
|
29
|
Padala SA, Barsouk A, Barsouk A, Rawla P,
Vakiti A, Kolhe R, Kota V and Ajebo GH: Epidemiology, staging, and
management of multiple myeloma. Med Sci (Basel).
9(3)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Fu T, Chen Y, Lou L, Li Z, Shi W, Zhang X
and Yang J: Risk of atrial fibrillation in patients with multiple
myeloma: What is known and directions for future study. Egypt Heart
J. 76(14)2024.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhang J, Xiao X and Liu J: The role of
circulating miRNAs in multiple myeloma. Sci China Life Sci.
58:1262–1269. 2015.PubMed/NCBI View Article : Google Scholar
|
32
|
Chen D, Yang X, Liu M, Zhang Z and Xing E:
Roles of miRNA dysregulation in the pathogenesis of multiple
myeloma. Cancer Gene Ther. 28:1256–1268. 2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Di Martino MT, Leone E, Amodio N, Foresta
U, Lionetti M, Pitari MR, Cantafio ME, Gullà A, Conforti F, Morelli
E, et al: Synthetic miR-34a mimics as a novel therapeutic agent for
multiple myeloma: In vitro and in vivo evidence. Clin Cancer Res.
18:6260–6270. 2012.PubMed/NCBI View Article : Google Scholar
|
34
|
Yang Y, Li F, Saha MN, Abdi J, Qiu L and
Chang H: miR-137 and miR-197 induce apoptosis and suppress
tumorigenicity by targeting MCL-1 in multiple myeloma. Clin Cancer
Res. 21:2399–2411. 2015.PubMed/NCBI View Article : Google Scholar
|
35
|
Xu Z, Huang C and Hao D: MicroRNA-1271
inhibits proliferation and promotes apoptosis of multiple myeloma
cells through inhibiting smoothened-mediated Hedgehog signaling
pathway. Oncol Rep. 37:1261–1269. 2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Morelli E, Leone E, Cantafio ME, Di
Martino MT, Amodio N, Biamonte L, Gullà A, Foresta U, Pitari MR,
Botta C, et al: Selective targeting of IRF4 by synthetic
microRNA-125b-5p mimics induces anti-multiple myeloma activity in
vitro and in vivo. Leukemia. 29:2173–2183. 2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Rossi M, Pitari MR, Amodio N, Di Martino
MT, Conforti F, Leone E, Botta C, Paolino FM, Del Giudice T,
Iuliano E, et al: miR-29b negatively regulates human osteoclastic
cell differentiation and function: Implications for the treatment
of multiple myeloma-related bone disease. J Cell Physiol.
228:1506–1515. 2013.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang PL, Quiery AT Jr, Blasick TM and
Brown RE: Morphoproteomic expression of H-ras (p21ras) correlates
with serum monoclonal immunoglobulin reduction in multiple myeloma
patients following pamidronate treatment. Ann Clin Lab Sci.
37:34–38. 2007.PubMed/NCBI
|