1
|
Callahan LA and Supinski GS:
Sepsis-induced myopathy. Crit Care Med. 37 (10 Suppl):S354–S367.
2009.PubMed/NCBI View Article : Google Scholar
|
2
|
Borges RC, Carvalho CRF, Colombo AS, da
Silva Borges MP and Soriano FG: Physical activity, muscle strength,
and exercise capacity 3 months after severe sepsis and septic
shock. Intensive Care Med. 41:1433–1444. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Fan E, Cheek F, Chlan L, Gosselink R, Hart
N, Herridge MS, Hopkins RO, Hough CL, Kress JP, Latronico N, et al:
An official American thoracic society clinical practice guideline:
The diagnosis of intensive care unit-acquired weakness in adults.
Am J Respir Crit Care Med. 190:1437–1446. 2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Zhang L, Hu W, Cai Z, Liu J, Wu J, Deng Y,
Yu K, Chen X, Zhu L, Ma J and Qin Y: Early mobilization of
critically ill patients in the intensive care unit: A systematic
review and meta-analysis. PLOS One. 14(e0223185)2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Zang K, Chen B, Wang M, Chen D, Hui L, Guo
S, Ji T and Shang F: The effect of early mobilization in critically
ill patients: A meta-analysis. Nurs Crit Care. 25:360–367.
2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Wang J, Ren D, Liu Y, Wang Y, Zhang B and
Xiao Q: Effects of early mobilization on the prognosis of
critically ill patients: A systematic review and meta-analysis. Int
J Nurs Stud. 110(103708)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Elkins M and Dentice R: Inspiratory muscle
training facilitates weaning from mechanical ventilation among
patients in the intensive care unit: A systematic review. J
Physiother. 61:125–134. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Yang T, Li Z, Jiang L, Wang Y and Xi X:
Risk factors for intensive care unit-acquired weakness: A
systematic review and meta-analysis. Acta Neurol Scand.
138:104–114. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Watanabe S, Morita Y, Suzuki S, Kochi K,
Ohno M, Liu K and Iida Y: Effects of the intensity and activity
time of early rehabilitation on activities of daily living
dependence in mechanically ventilated patients. Prog Rehabil Med.
6(20210054)2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Mignemi NA, McClatchey PM, Kilchrist KV,
Williams IM, Millis BA, Syring KE, Duvall CL, Wasserman DH and
McGuinness OP: Rapid changes in the microvascular circulation of
skeletal muscle impair insulin delivery during sepsis. Am J Physiol
Endocrinol Metab. 316:E1012–E1023. 2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Hermans G, De Jonghe B, Bruyninckx F and
Van den Berghe G: Interventions for preventing critical illness
polyneuropathy and critical illness myopathy. Cochrane Database
Syst Rev. 2014(CD006832)2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Lad H, Saumur TM, Herridge MS, Dos Santos
CC, Mathur S, Batt J and Gilbert PM: Intensive care unit-acquired
weakness: Not just another muscle atrophying condition. Int J Mol
Sci. 21(7840)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Stana F, Vujovic M, Mayaki D, Leduc-Gaudet
JP, Leblanc P, Huck L and Hussain SNA: Differential regulation of
the autophagy and proteasome pathways in skeletal muscles in
sepsis. Crit Care Med. 45:e971–e979. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Holeček M: The role of skeletal muscle in
the pathogenesis of altered concentrations of branched-chain amino
acids (valine, leucine, and isoleucine) in liver cirrhosis,
diabetes, and other diseases. Physiol Res. 70:293–305.
2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Hernandez-García A, Manjarín R, Suryawan
A, Nguyen HV, Davis TA and Orellana RA: Amino acids, independent of
insulin, attenuate skeletal muscle autophagy in neonatal pigs
during endotoxemia. Pediatr Res. 80:448–451. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Wang W, Xu C, Ma X, Zhang X and Xie P:
Intensive Care unit-acquired weakness: A review of recent progress
with a look toward the future. Front Med (Lausanne).
7(559789)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Baldelli S, Ciccarone F, Limongi D,
Checconi P, Palamara AT and Ciriolo MR: Glutathione and nitric
oxide: Key team players in use and disuse of skeletal muscle.
Nutrients. 11(2318)2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Ortolani O, Conti A, De Gaudio AR, Moraldi
E, Cantini Q and Novelli G: The effect of glutathione and
N-acetylcysteine on lipoperoxidative damage in patients with early
septic shock. Am J Respir Crit Care Med. 161:1907–1911.
2000.PubMed/NCBI View Article : Google Scholar
|
19
|
Heyland DK, Wibbenmeyer L, Pollack JA,
Friedman B, Turgeon AF, Eshraghi N, Jeschke MG, Bélisle S, Grau D,
Mandell S, et al: A randomized trial of enteral glutamine for
treatment of burn injuries. N Engl J Med. 387:1001–1010.
2022.PubMed/NCBI View Article : Google Scholar
|
20
|
Gerovasili V, Stefanidis K, Vitzilaios K,
Karatzanos E, Politis P, Koroneos A, Chatzimichail A, Routsi C,
Roussos C and Nanas S: Electrical muscle stimulation preserves the
muscle mass of critically ill patients: A randomized study. Crit
Care. 13(R161)2009.PubMed/NCBI View
Article : Google Scholar
|
21
|
Chen S, Jiang Y, Yu B, Dai Y, Mi Y, Tan Y,
Yao J and Tian Y: Effect of transcutaneous neuromuscular electrical
stimulation on prevention of intensive care unit-acquired weakness
in chronic obstructive pulmonary disease patients with mechanical
ventilation. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 31:709–713.
2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
22
|
Yoshihara I, Kondo Y, Okamoto K and Tanaka
H: Sepsis-associated muscle wasting: A comprehensive review from
bench to bedside. Int J Mol Sci. 24(5040)2023.PubMed/NCBI View Article : Google Scholar
|
23
|
Khalil R: Ubiquitin-proteasome pathway and
muscle atrophy. Adv Exp Med Biol. 1088:235–248. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Bodine SC, Latres E, Baumhueter S, Lai VK,
Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K,
et al: Identification of ubiquitin ligases required for skeletal
muscle atrophy. Science. 294:1704–1708. 2001.PubMed/NCBI View Article : Google Scholar
|
25
|
Gehrig SM, van der Poel C, Sayer TA,
Schertzer JD, Henstridge DC, Church JE, Lamon S, Russell AP, Davies
KE, Febbraio MA and Lynch GS: Hsp72 preserves muscle function and
slows progression of severe muscular dystrophy. Nature.
484:394–398. 2012.PubMed/NCBI View Article : Google Scholar
|
26
|
Akkad H, Cacciani N, Llano-Diez M, Corpeno
Kalamgi R, Tchkonia T, Kirkland JL and Larsson L: Vamorolone
treatment improves skeletal muscle outcome in a critical illness
myopathy rat model. Acta Physiol (Oxf). 225(e13172)2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Kim YI, Lee H, Nirmala FS, Seo HD, Ha TY,
Jung CH and Ahn J: Antioxidant activity of Valeriana fauriei
protects against dexamethasone-induced muscle atrophy. Oxid Med
Cell Longev. 2022(3645431)2022.PubMed/NCBI View Article : Google Scholar
|
28
|
Crossland H, Constantin-Teodosiu D and
Greenhaff PL: The regulatory roles of PPARs in skeletal muscle fuel
metabolism and inflammation: Impact of PPAR agonism on muscle in
chronic disease, contraction and sepsis. Int J Mol Sci.
22(9775)2021.PubMed/NCBI View Article : Google Scholar
|
29
|
Khan B, Gand LV, Amrute-Nayak M and Nayak
A: Emerging mechanisms of skeletal muscle homeostasis and cachexia:
The SUMO perspective. Cells. 12(644)2023.PubMed/NCBI View Article : Google Scholar
|
30
|
Thoma A and Lightfoot AP: nf-kb and
inflammatory cytokine signalling: Role in skeletal muscle atrophy.
Adv Exp Med Biol. 1088:267–279. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Petrocelli JJ and Drummond MJ:
PGC-1α-targeted therapeutic approaches to enhance muscle recovery
in aging. Int J Environ Res Public Health. 17(8650)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Wu Y, Yao YM and Lu ZQ: Mitochondrial
quality control mechanisms as potential therapeutic targets in
sepsis-induced multiple organ failure. J Mol Med (Berl).
97:451–462. 2019.PubMed/NCBI View Article : Google Scholar
|
33
|
Rocheteau P, Chatre L, Briand D, Mebarki
M, Jouvion G, Bardon J, Crochemore C, Serrani P, Lecci PP, Latil M,
et al: Sepsis induces long-term metabolic and mitochondrial muscle
stem cell dysfunction amenable by mesenchymal stem cell therapy.
Nat Commun. 6(10145)2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Deprez A, Orfi Z, Rieger L and Dumont NA:
Impaired muscle stem cell function and abnormal myogenesis in
acquired myopathies. Biosci Rep. 43(BSR20220284)2023.PubMed/NCBI View Article : Google Scholar
|