Exploring the pharmacological mechanisms for alleviating OSA: Adenosine A2A receptor downregulation of the PI3K/Akt/HIF‑1 pathway (Review)
- Authors:
- Nini Ma
- Peijie Liu
- Ning Li
- Yushi Hu
- Liang Kang
-
Affiliations: School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China - Published online on: November 28, 2024 https://doi.org/10.3892/br.2024.1899
- Article Number: 21
-
Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gottlieb DJ and Punjabi NM: Diagnosis and Management of Obstructive Sleep Apnea: A review. JAMA. 323:1389–1400. 2020.PubMed/NCBI View Article : Google Scholar | |
Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, Nunez CM, Patel SR, Penzel T, Pépin JL, et al: Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir Med. 7:687–698. 2019.PubMed/NCBI View Article : Google Scholar | |
Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N and Esmaeilzadeh A: COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med. 23(e3303)2021.PubMed/NCBI View Article : Google Scholar | |
Franklin KA and Lindberg E: Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea. J Thorac Dis. 7:1311–1322. 2015.PubMed/NCBI View Article : Google Scholar | |
Gu X, Zhang J, Shi Y, Shen H, Li Y, Chen Y and Liang L: ESM1/HIF-1α pathway modulates chronic intermittent hypoxia-induced non-small-cell lung cancer proliferation, stemness and epithelial-mesenchymal transition. Oncol Rep. 45:1226–1234. 2021.PubMed/NCBI View Article : Google Scholar | |
Hirsch Allen AJ, Kendzerska T, Bhatti P, Jen R, Myers R, Hajipour M, van Eeden SF and Ayas N: Obstructive sleep apnea severity, circulating biomarkers, and cancer risk. J Clin Sleep Med. 20:1415–1422. 2024.PubMed/NCBI View Article : Google Scholar | |
Ni W, Niu Y, Cao S, Fan C, Fan J, Zhu L and Wang X: Intermittent hypoxia exacerbates anxiety in high-fat diet-induced diabetic mice by inhibiting TREM2-regulated IFNAR1 signaling. J Neuroinflammation. 21(166)2024.PubMed/NCBI View Article : Google Scholar | |
Yang M, Cai W, Lin Z, Tuohuti A and Chen X: Intermittent Hypoxia Promotes TAM-Induced Glycolysis in Laryngeal Cancer Cells via Regulation of HK1 Expression through Activation of ZBTB10. Int J Mol Sci. 24(14808)2023.PubMed/NCBI View Article : Google Scholar | |
Cheong AJY, Tan BKJ, Teo YH, Tan NKW, Yap DWT, Sia CH, Ong TH, Leow LC, See A and Toh ST: Obstructive Sleep Apnea and Lung Cancer: A Systematic Review and Meta-Analysis. Ann Am Thorac Soc. 19:469–475. 2022.PubMed/NCBI View Article : Google Scholar | |
Tang SS, Liang CH, Liu YL, Wei W, Deng XR, Shi XY, Wang LM, Zhang LJ and Yuan HJ: Intermittent hypoxia is involved in gut microbial dysbiosis in type 2 diabetes mellitus and obstructive sleep apnea-hypopnea syndrome. World J Gastroenterol. 28:2320–2333. 2022.PubMed/NCBI View Article : Google Scholar | |
Almendros I, Martinez-Garcia MA, Farré R and Gozal D: Obesity, sleep apnea, and cancer. Int J Obes (Lond). 44:1653–1667. 2020.PubMed/NCBI View Article : Google Scholar | |
Prabhakar NR, Peng YJ and Nanduri J: Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 130:5042–5051. 2020.PubMed/NCBI View Article : Google Scholar | |
Moriondo G, Soccio P, Minoves M, Scioscia G, Tondo P, Foschino Barbaro MP, Pépin JL, Briançon-Marjollet A and Lacedonia D: Intermittent Hypoxia Mediates Cancer Development and Progression Through HIF-1 and miRNA Regulation. Arch Bronconeumol. 59:629–637. 2023.PubMed/NCBI View Article : Google Scholar : (In English, Spanish). | |
Wang N, Su X, Sams D, Prabhakar NR and Nanduri J: P300/CBP Regulates HIF-1-Dependent Sympathetic Activation and Hypertension by Intermittent Hypoxia. Am J Respir Cell Mol Biol. 70:110–118. 2024.PubMed/NCBI View Article : Google Scholar | |
Halpin-Veszeleiova K and Hatfield SM: Oxygenation and A2AR blockade to eliminate hypoxia/HIF-1α-adenosinergic immunosuppressive axis and improve cancer immunotherapy. Curr Opin Pharmacol. 53:84–90. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Yan S, Wang J, Xu Y, Wang Y, Zhang S, Xu X, Yang Q, Zeng X, Zhou Y, et al: Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat Commun. 8(584)2017.PubMed/NCBI View Article : Google Scholar | |
Belaidi E, Morand J, Gras E, Pépin JL and Godin-Ribuot D: Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications. Pharmacol Ther. 168:1–11. 2016.PubMed/NCBI View Article : Google Scholar | |
Guan S, Suman S, Amann JM, Wu R, Carbone DP, Wang J and Dikov MM: Metabolic reprogramming by adenosine antagonism and implications in non-small cell lung cancer therapy. Neoplasia. 32(100824)2022.PubMed/NCBI View Article : Google Scholar | |
Bruzzese L, Fromonot J, By Y, Durand-Gorde JM, Condo J, Kipson N, Guieu R, Fenouillet E and Ruf J: NF-κB enhances hypoxia-driven T-cell immunosuppression via upregulation of adenosine A(2A) receptors. Cell Signal. 26:1060–1067. 2014.PubMed/NCBI View Article : Google Scholar | |
Sitkovsky MV, Kjaergaard VJ, Lukashev D and Ohta A: Hypoxia-adenosinergic immunosuppression: Tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res. 14:5947–5952. 2008.PubMed/NCBI View Article : Google Scholar | |
Ke RH, Xiong J, Liu Y and Ye ZR: Adenosine A2a receptor induced gliosis via Akt/NF-kappaB pathway in vitro. Neurosci Res. 65:280–285. 2009.PubMed/NCBI View Article : Google Scholar | |
Eckle T, Kewley EM, Brodsky KS, Tak E, Bonney S, Gobel M, Anderson D, Glover LE, Riegel AK, Colgan SP and Eltzschig HK: Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J Immunol. 192:1249–1256. 2014.PubMed/NCBI View Article : Google Scholar | |
Steingold JM and Hatfield SM: Targeting Hypoxia-A2A Adenosinergic Immunosuppression of Antitumor T Cells During Cancer Immunotherapy. Front Immunol. 11(570041)2020.PubMed/NCBI View Article : Google Scholar | |
Castillo CA, León D, Ruiz MA, Albasanz JL and Martín M: Modulation of adenosine A1 and A2A receptors in C6 glioma cells during hypoxia: Involvement of endogenous adenosine. J Neurochem. 105:2315–2329. 2008.PubMed/NCBI View Article : Google Scholar | |
Pang L, Ng KT, Liu J, Yeung WO, Zhu J, Chiu TS, Liu H, Chen Z, Lo CM and Man K: Plasmacytoid dendritic cells recruited by HIF-1α/eADO/ADORA1 signaling induce immunosuppression in hepatocellular carcinoma. Cancer Lett. 522:80–92. 2021.PubMed/NCBI View Article : Google Scholar | |
Orrù G, Storari M, Scano A, Piras V, Taibi R and Viscuso D: Obstructive Sleep Apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. Eur Rev Med Pharmacol Sci. 24:6939–6948. 2020.PubMed/NCBI View Article : Google Scholar | |
Fang S, Sun S, Cai H, Zou X, Wang S, Hao X, Wan X, Tian J, Li Z, He Z, et al: IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1(+/-) mice display increases atherosclerotic plaque stability. Theranostics. 11:9358–9375. 2021.PubMed/NCBI View Article : Google Scholar | |
Lin YF, Li MH, Huang RH, Zhang SZ, Xu XF, Zhou HM, Liu MH, Liao XX, Liao LZ, Guo Y and Zhuang XD: GP73 enhances the ox-LDL-induced inflammatory response in THP-1 derived macrophages via affecting NLRP3 inflammasome signaling. Int J Cardiol. 387(131109)2023.PubMed/NCBI View Article : Google Scholar | |
Balzan S and Lubrano V: LOX-1 receptor: A potential link in atherosclerosis and cancer. Life Sci. 198:79–86. 2018.PubMed/NCBI View Article : Google Scholar | |
Sylvers-Davie KL and Davies BSJ: Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 321:E493–E508. 2021.PubMed/NCBI View Article : Google Scholar | |
Li W and Wang W: Causal modulation of lipid metabolism may shape the inflammatory microenvironment and potentially augment immunotherapy: A comprehensive genetic landscape revealed by Mendelian randomization analysis. Int Immunol. 36:291–302. 2024.PubMed/NCBI View Article : Google Scholar | |
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W and Xie X: New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 20:247–260. 2019.PubMed/NCBI View Article : Google Scholar | |
Lara-Guzmán OJ, Gil-Izquierdo A, Medina S, Osorio E, Álvarez-Quintero R, Zuluaga N, Oger C, Galano JM, Durand T and Muñoz-Durango K: Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol. 15:1–11. 2018.PubMed/NCBI View Article : Google Scholar | |
Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L and Giorgino F: Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 100:1–19. 2018.PubMed/NCBI View Article : Google Scholar | |
Xu D, Hu YH, Gou X, Li FY, Yang XY, Li YM and Chen F: Oxidative Stress and Antioxidative Therapy in Pulmonary Arterial Hypertension. Molecules. 27(3724)2022.PubMed/NCBI View Article : Google Scholar | |
Li M, Xin S, Gu R, Zheng L, Hu J, Zhang R and Dong H: Novel Diagnostic Biomarkers Related to Oxidative Stress and Macrophage Ferroptosis in Atherosclerosis. Oxid Med Cell Longev. 2022(8917947)2022.PubMed/NCBI View Article : Google Scholar | |
Kattoor AJ, Pothineni NVK, Palagiri D and Mehta JL: Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep. 19(42)2017.PubMed/NCBI View Article : Google Scholar | |
Batty M, Bennett MR and Yu E: The Role of Oxidative Stress in Atherosclerosis. Cells. 11(3843)2022.PubMed/NCBI View Article : Google Scholar | |
Ranjbarvaziri S, Kooiker KB, Ellenberger M, Fajardo G, Zhao M, Vander Roest AS, Woldeyes RA, Koyano TT, Fong R, Ma N, et al: Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation. 144:1714–1731. 2021.PubMed/NCBI View Article : Google Scholar | |
Tian L, Cao W, Yue R, Yuan Y, Guo X, Qin D, Xing J and Wang X: Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J Pharmacol Sci. 139:352–360. 2019.PubMed/NCBI View Article : Google Scholar | |
Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, Billings FT 4th, Verdin E, Auwerx J, Harrison DG and Dikalov SI: Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress. Circ Res. 126:439–452. 2020.PubMed/NCBI View Article : Google Scholar | |
Kent BD, Grote L, Ryan S, Pépin JL, Bonsignore MR, Tkacova R, Saaresranta T, Verbraecken J, Lévy P, Hedner J and McNicholas WT: Diabetes mellitus prevalence and control in sleep-disordered breathing: The European Sleep Apnea Cohort (ESADA) study. Chest. 146:982–990. 2014.PubMed/NCBI View Article : Google Scholar | |
Giampá SQC, Lorenzi-Filho G and Drager LF: Obstructive sleep apnea and metabolic syndrome. Obesity (Silver Spring). 31:900–911. 2023.PubMed/NCBI View Article : Google Scholar | |
Lévy P, Kohler M, McNicholas WT, Barbé F, McEvoy RD, Somers VK, Lavie L and Pépin JL: Obstructive sleep apnoea syndrome. Nat Rev Dis Primers. 1(15015)2015.PubMed/NCBI View Article : Google Scholar | |
Unnikrishnan D, Jun J and Polotsky V: Inflammation in sleep apnea: An update. Rev Endocr Metab Disord. 16:25–34. 2015.PubMed/NCBI View Article : Google Scholar | |
Alterki A, Abu-Farha M, Al Shawaf E, Al-Mulla F and Abubaker J: Investigating the Relationship between Obstructive Sleep Apnoea, Inflammation and Cardio-Metabolic Diseases. Int J Mol Sci. 24(6807)2023.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Zeng J, Pei X, Zhao J, Zhao F, Zhang G, Liang K, Li J and Zhao X: Causal Relationships Between Circulating Inflammatory Proteins and Obstructive Sleep Apnea: A Bidirectional Mendelian Randomization Study. Nat Sci Sleep. 16:787–800. 2024.PubMed/NCBI View Article : Google Scholar | |
Malicki M, Karuga FF, Szmyd B, Sochal M and Gabryelska A: Obstructive Sleep Apnea, Circadian Clock Disruption, and Metabolic Consequences. Metabolites. 13(60)2022.PubMed/NCBI View Article : Google Scholar | |
Gras E, Belaidi E, Briançon-Marjollet A, Pépin JL, Arnaud C and Godin-Ribuot D: Endothelin-1 mediates intermittent hypoxia-induced inflammatory vascular remodeling through HIF-1 activation. J Appl Physiol (1985). 120:437–443. 2016.PubMed/NCBI View Article : Google Scholar | |
Taylor CT, Kent BD, Crinion SJ, McNicholas WT and Ryan S: Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression. Biochem Biophys Res Commun. 447:660–665. 2014.PubMed/NCBI View Article : Google Scholar | |
Imamura T, Poulsen O and Haddad GG: Intermittent hypoxia induces murine macrophage foam cell formation by IKK-β-dependent NF-κB pathway activation. J Appl Physiol (1985). 121:670–677. 2016.PubMed/NCBI View Article : Google Scholar | |
Lv R, Zhao Y, Wang X, He Y, Dong N, Min X, Liu X, Yu Q, Yuan K, Yue H and Yin Q: GLP-1 analogue liraglutide attenuates CIH-induced cognitive deficits by inhibiting oxidative stress, neuroinflammation, and apoptosis via the Nrf2/HO-1 and MAPK/NF-κB signaling pathways. Int Immunopharmacol. 142(113222)2024.PubMed/NCBI View Article : Google Scholar | |
Murphy AM, Thomas A, Crinion SJ, Kent BD, Tambuwala MM, Fabre A, Pepin JL, Roche HM, Arnaud C and Ryan S: Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur Respir J. 49(1601731)2017.PubMed/NCBI View Article : Google Scholar | |
Arnaud C, Poulain L, Lévy P and Dematteis M: Inflammation contributes to the atherogenic role of intermittent hypoxia in apolipoprotein-E knock out mice. Atherosclerosis. 219:425–431. 2011.PubMed/NCBI View Article : Google Scholar | |
Huang T, Sands SA, Stampfer MJ, Tworoger SS, Hu FB and Redline S: Insulin Resistance, Hyperglycemia, and Risk of Developing Obstructive Sleep Apnea in Men and Women in the United States. Ann Am Thorac Soc. 19:1740–1749. 2022.PubMed/NCBI View Article : Google Scholar | |
Meng X, Wen H and Lian L: Association between triglyceride glucose-body mass index and obstructive sleep apnea: A study from NHANES 2015-2018. Front Nutr. 11(1424881)2024.PubMed/NCBI View Article : Google Scholar | |
Barros D and García-Río F: Obstructive sleep apnea and dyslipidemia: From animal models to clinical evidence. Sleep. 42(zsy236)2019.PubMed/NCBI View Article : Google Scholar | |
Tang H, Zhou Q, Zheng F, Wu T, Tang YD and Jiang J: The Causal Effects of Lipid Profiles on Sleep Apnea. Front Nutr. 9(910690)2022.PubMed/NCBI View Article : Google Scholar | |
Sun J, Hu J, Tu C, Zhong A and Xu H: Obstructive Sleep Apnea Susceptibility Genes in Chinese Population: A Field Synopsis and Meta-Analysis of Genetic Association Studies. PLoS One. 10(e0135942)2015.PubMed/NCBI View Article : Google Scholar | |
Uyrum E, Balbay O, Annakkaya AN, Gulec Balbay E, Silan F and Arbak P: The relationship between obstructive sleep apnea syndrome and apolipoprotein E genetic variants. Respiration. 89:195–200. 2015.PubMed/NCBI View Article : Google Scholar | |
Meszaros M and Bikov A: Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspectives in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines. 10(2754)2022.PubMed/NCBI View Article : Google Scholar | |
Burke SL, Hu T, Spadola CE, Li T, Naseh M, Burgess A and Cadet T: Mild cognitive impairment: associations with sleep disturbance, apolipoprotein e4, and sleep medications. Sleep Med. 52:168–176. 2018.PubMed/NCBI View Article : Google Scholar | |
Huguenard CJC, Cseresznye A, Darcey T, Nkiliza A, Evans JE, Hazen SL, Mullan M, Crawford F and Abdullah L: Age and APOE affect L-carnitine system metabolites in the brain in the APOE-TR model. Front Aging Neurosci. 14(1059017)2023.PubMed/NCBI View Article : Google Scholar | |
Turner AD, Locklear CE, Oruru D, Briggs AQ, Bubu OM and Seixas A: Exploring the combined effects of sleep apnea and APOE-e4 on biomarkers of Alzheimer's disease. Front Aging Neurosci. 14(1017521)2023.PubMed/NCBI View Article : Google Scholar | |
Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, Lutz EP, Kako Y, Velez-Carrasco W, Goldberg IJ, et al: Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA. 98:7522–7527. 2001.PubMed/NCBI View Article : Google Scholar | |
Wang N, Shi XF, Khan SA, Wang B, Semenza GL, Prabhakar NR and Nanduri J: Hypoxia-inducible factor-1 mediates pancreatic β-cell dysfunction by intermittent hypoxia. Am J Physiol Cell Physiol. 319:C922–C932. 2020.PubMed/NCBI View Article : Google Scholar | |
Fang Y, Zhang Q, Tan J, Li L, An X and Lei P: Intermittent hypoxia-induced rat pancreatic β-cell apoptosis and protective effects of antioxidant intervention. Nutr Diabetes. 4(e131)2014.PubMed/NCBI View Article : Google Scholar | |
Dempsey JA, Veasey SC, Morgan BJ and O'Donnell CP: Pathophysiology of sleep apnea. Physiol Rev. 90:47–112. 2010.PubMed/NCBI View Article : Google Scholar | |
Zeng S, Wang Y, Ai L, Huang L, Liu Z, He C, Bai Q and Li Y: Chronic intermittent hypoxia-induced oxidative stress activates TRB3 and phosphorylated JNK to mediate insulin resistance and cell apoptosis in the pancreas. Clin Exp Pharmacol Physiol. 51(e13843)2024.PubMed/NCBI View Article : Google Scholar | |
Nascimento DC, Viacava PR, Ferreira RG, Damaceno MA, Piñeros AR, Melo PH, Donate PB, Toller-Kawahisa JE, Zoppi D, Veras FP, et al: Sepsis expands a CD39(+) plasmablast population that promotes immunosuppression via adenosine-mediated inhibition of macrophage antimicrobial activity. Immunity. 54:2024–2041.e8. 2021.PubMed/NCBI View Article : Google Scholar | |
Pasquini S, Contri C, Borea PA, Vincenzi F and Varani K: Adenosine and Inflammation: Here, There and Everywhere. Int J Mol Sci. 22(7685)2021.PubMed/NCBI View Article : Google Scholar | |
Haskó G, Linden J, Cronstein B and Pacher P: Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov. 7:759–770. 2008.PubMed/NCBI View Article : Google Scholar | |
Junqueira SC, Dos Santos Coelho I, Lieberknecht V, Cunha MP, Calixto JB, Rodrigues ALS, Santos ARS and Dutra RC: Inosine, an Endogenous Purine Nucleoside, Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis: A Role for A2A Adenosine Receptor. Mol Neurobiol. 54:3271–3285. 2017.PubMed/NCBI View Article : Google Scholar | |
Impellizzeri D, Di Paola R, Esposito E, Mazzon E, Paterniti I, Melani A, Bramanti P, Pedata F and Cuzzocrea S: CGS 21680, an agonist of the adenosine (A2A) receptor, decreases acute lung inflammation. Eur J Pharmacol. 668:305–316. 2011.PubMed/NCBI View Article : Google Scholar | |
Lu Y, Zhu W, Zhang GX, Chen JC, Wang QL, Mao MY, Deng SC, Jin LP, Liu H and Kuang YH: Adenosine A2A receptor activation regulates the M1 macrophages activation to initiate innate and adaptive immunity in psoriasis. Clin Immunol. 266(110309)2024.PubMed/NCBI View Article : Google Scholar | |
Mohsenin A, Mi T, Xia Y, Kellems RE, Chen JF and Blackburn MR: Genetic removal of the A2A adenosine receptor enhances pulmonary inflammation, mucin production, and angiogenesis in adenosine deaminase-deficient mice. Am J Physiol Lung Cell Mol Physiol. 293:L753–L761. 2007.PubMed/NCBI View Article : Google Scholar | |
Welihinda AA, Kaur M, Raveendran KS and Amento EP: Enhancement of inosine-mediated A(2A)R signaling through positive allosteric modulation. Cell Signal. 42:227–235. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhao N, Shao Z, Xia G, Liu H, Zhang L, Zhao X, Dang S, Qian L, Xu W, Yu Z and Wang R: Protective role of the CD73-A2AR axis in cirrhotic cardiomyopathy through negative feedback regulation of the NF-κB pathway. Front Immunol. 15(1428551)2024.PubMed/NCBI View Article : Google Scholar | |
Correale P, Caracciolo M, Bilotta F, Conte M, Cuzzola M, Falcone C, Mangano C, Falzea AC, Iuliano E, Morabito A, et al: Therapeutic effects of adenosine in high flow 21% oxygen aereosol in patients with Covid19-pneumonia. PLoS One. 15(e0239692)2020.PubMed/NCBI View Article : Google Scholar | |
Tozzi M and Novak I: Purinergic Receptors in Adipose Tissue As Potential Targets in Metabolic Disorders. Front Pharmacol. 8(878)2017.PubMed/NCBI View Article : Google Scholar | |
Kotańska M, Dziubina A, Szafarz M, Mika K, Bednarski M, Nicosia N, Temirak A, Müller CE and Kieć-Kononowicz K: Preliminary Evidence of the Potent and Selective Adenosine A2B Receptor Antagonist PSB-603 in Reducing Obesity and Some of Its Associated Metabolic Disorders in Mice. Int J Mol Sci. 23(13439)2022.PubMed/NCBI View Article : Google Scholar | |
Zhao W, Ma L, Cai C and Gong X: Caffeine Inhibits NLRP3 Inflammasome Activation by Suppressing MAPK/NF-κB and A2aR Signaling in LPS-Induced THP-1 Macrophages. Int J Biol Sci. 15:1571–1581. 2019.PubMed/NCBI View Article : Google Scholar | |
Zohair B, Chraa D, Rezouki I, Benthami H, Razzouki I, Elkarroumi M, Olive D, Karkouri M and Badou A: The immune checkpoint adenosine 2A receptor is associated with aggressive clinical outcomes and reflects an immunosuppressive tumor microenvironment in human breast cancer. Front Immunol. 14(1201632)2023.PubMed/NCBI View Article : Google Scholar | |
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F and Sobrevia L: Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med. 55:26–44. 2017.PubMed/NCBI View Article : Google Scholar | |
DeOliveira CC, Paiva Caria CR, Ferreira Gotardo EM, Ribeiro ML and Gambero A: Role of A(1) and A(2A) adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice. Eur J Pharmacol. 799:154–159. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen S, Fan J, Xie P, Ahn J, Fernandez M, Billingham LK, Miska J, Wu JD, Wainwright DA, Fang D, et al: CD8+ T cells sustain antitumor response by mediating crosstalk between adenosine A2A receptor and glutathione/GPX4. J Clin Invest. 134(e170071)2024.PubMed/NCBI View Article : Google Scholar | |
Bruzzese A, Dalton JAR and Giraldo J: Insights into adenosine A2A receptor activation through cooperative modulation of agonist and allosteric lipid interactions. PLoS Comput Biol. 16(e1007818)2020.PubMed/NCBI View Article : Google Scholar | |
Friedman B, Corciulo C, Castro CM and Cronstein BN: Adenosine A2A receptor signaling promotes FoxO associated autophagy in chondrocytes. Sci Rep. 11(968)2021.PubMed/NCBI View Article : Google Scholar | |
Cai Y, Li H, Liu M, Pei Y, Zheng J, Zhou J, Luo X, Huang W, Ma L, Yang Q, et al: Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology. 68:48–61. 2018.PubMed/NCBI View Article : Google Scholar | |
Kong LR, Chen XH, Sun Q, Zhang KY, Xu L, Ding L, Zhou YP, Zhang ZB, Lin JR and Gao PJ: Loss of C3a and C5a receptors promotes adipocyte browning and attenuates diet-induced obesity via activating inosine/A2aR pathway. Cell Rep. 42(112078)2023.PubMed/NCBI View Article : Google Scholar | |
Lim J, Iyer A, Suen JY, Seow V, Reid RC, Brown L and Fairlie DP: C5aR and C3aR antagonists each inhibit diet-induced obesity, metabolic dysfunction, and adipocyte and macrophage signaling. FASEB J. 27:822–831. 2013.PubMed/NCBI View Article : Google Scholar | |
Kim K, Im H, Son Y, Kim M, Tripathi SK, Jeong LS and Lee YH: Anti-obesity effects of the dual-active adenosine A(2A)/A(3) receptor-ligand LJ-4378. Int J Obes (Lond). 46:2128–2136. 2022.PubMed/NCBI View Article : Google Scholar | |
Shamsuzzaman A, Amin RS, Calvin AD, Davison D and Somers VK: Severity of obstructive sleep apnea is associated with elevated plasma fibrinogen in otherwise healthy patients. Sleep Breath. 18:761–766. 2014.PubMed/NCBI View Article : Google Scholar | |
Li H, Chen O, Ye Z, Zhang R, Hu H, Zhang N, Huang J, Liu W and Sun X: Inhalation of high concentrations of hydrogen ameliorates liver ischemia/reperfusion injury through A(2A) receptor mediated PI3K-Akt pathway. Biochem Pharmacol. 130:83–92. 2017.PubMed/NCBI View Article : Google Scholar | |
Huang X, Wu P, Huang F, Xu M, Chen M, Huang K, Li GP, Xu M, Yao D and Wang L: Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A(2A) receptor-induced SDF-1/CXCR4/PI3K/AKT signaling. J Biomed Sci. 24(52)2017.PubMed/NCBI View Article : Google Scholar | |
Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel CB and Tasca CI: Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A(1) and A(2A) adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal. 15:465–476. 2019.PubMed/NCBI View Article : Google Scholar | |
Wen MH, Wu MJ, Vinit S and Lee KZ: Modulation of Serotonin and Adenosine 2A Receptors on Intermittent Hypoxia-Induced Respiratory Recovery following Mid-Cervical Contusion in the Rat. J Neurotrauma. 36:2991–3004. 2019.PubMed/NCBI View Article : Google Scholar | |
Mathew OP: Apnea of prematurity: Pathogenesis and management strategies. J Perinatol. 31:302–310. 2011.PubMed/NCBI View Article : Google Scholar | |
Lv B, Yang L, Gao Y and Li G: Epoxyeicosatrienoic Acids Attenuate LPS-Induced NIH/3T3 Cell Fibrosis through the A(2A)R and PI3K/Akt Signaling Pathways. Bull Exp Biol Med. 177:185–189. 2024.PubMed/NCBI View Article : Google Scholar | |
Mori Y, Higuchi M, Masuyama N and Gotoh Y: Adenosine A2A receptor facilitates calcium-dependent protein secretion through the activation of protein kinase A and phosphatidylinositol-3 kinase in PC12 cells. Cell Struct Funct. 29:101–110. 2004.PubMed/NCBI View Article : Google Scholar | |
Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K and Tsatsanis C: Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J Immunol. 198:1006–1014. 2017.PubMed/NCBI View Article : Google Scholar | |
Troutman TD, Bazan JF and Pasare C: Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle. 11:3559–3567. 2012.PubMed/NCBI View Article : Google Scholar | |
Li Q, Wang G, Xiong SH, Cao Y, Liu B, Sun J, Li L, Mohammadtursun N, Yu H, Dong J and Wu J: Bu-Shen-Fang-Chuan formula attenuates cigarette smoke-induced inflammation by modulating the PI3K/Akt-Nrf2 and NF-κB signalling pathways. J Ethnopharmacol. 261(113095)2020.PubMed/NCBI View Article : Google Scholar | |
Li L, Qu Y, Mao M, Xiong Y and Mu D: The involvement of phosphoinositid 3-kinase/Akt pathway in the activation of hypoxia-inducible factor-1alpha in the developing rat brain after hypoxia-ischemia. Brain Res. 1197:152–158. 2008.PubMed/NCBI View Article : Google Scholar | |
Li L, Yin X, Ma N, Lin F, Kong X, Chi J and Feng Z: Desferrioxamine regulates HIF-1 alpha expression in neonatal rat brain after hypoxia-ischemia. Am J Transl Res. 6:377–383. 2014.PubMed/NCBI | |
Hutami IR, Izawa T, Khurel-Ochir T, Sakamaki T, Iwasa A and Tanaka E: Macrophage Motility in Wound Healing Is Regulated by HIF-1α via S1P Signaling. Int J Mol Sci. 22(8992)2021.PubMed/NCBI View Article : Google Scholar | |
Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, et al: HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 112:645–657. 2003.PubMed/NCBI View Article : Google Scholar | |
Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, Hurtado-Ziola N, Nizet V and Johnson RS: HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 115:1806–1815. 2005.PubMed/NCBI View Article : Google Scholar | |
Kim SY, Jeong E, Joung SM and Lee JY: PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress. Biochem Biophys Res Commun. 419:466–471. 2012.PubMed/NCBI View Article : Google Scholar | |
Kunze R, Zhou W, Veltkamp R, Wielockx B, Breier G and Marti HH: Neuron-specific prolyl-4-hydroxylase domain 2 knockout reduces brain injury after transient cerebral ischemia. Stroke. 43:2748–2756. 2012.PubMed/NCBI View Article : Google Scholar | |
Majmundar AJ, Wong WJ and Simon MC: Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 40:294–309. 2010.PubMed/NCBI View Article : Google Scholar | |
Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K and Chrousos GP: Elevation of plasma cytokines in disorders of excessive daytime sleepiness: Role of sleep disturbance and obesity. J Clin Endocrinol Metab. 82:1313–1316. 1997.PubMed/NCBI View Article : Google Scholar | |
Ryan S: Adipose tissue inflammation by intermittent hypoxia: Mechanistic link between obstructive sleep apnoea and metabolic dysfunction. J Physiol. 595:2423–2430. 2017.PubMed/NCBI View Article : Google Scholar | |
Toujani S, Kaabachi W, Mjid M, Hamzaoui K, Cherif J and Beji M: Vitamin D deficiency and interleukin-17 relationship in severe obstructive sleep apnea-hypopnea syndrome. Ann Thorac Med. 12:107–113. 2017.PubMed/NCBI View Article : Google Scholar | |
Gao C, Koko MYF, Ding M, Hong W, Li J, Dong N and Hui M: Intestinal alkaline phosphatase (IAP, IAP Enhancer) attenuates intestinal inflammation and alleviates insulin resistance. Front Immunol. 13(927272)2022.PubMed/NCBI View Article : Google Scholar | |
Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J and Gu Y: PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep. 19:783–791. 2019.PubMed/NCBI View Article : Google Scholar | |
Rahman SMK, Uyama T, Hussain Z and Ueda N: Roles of Endocannabinoids and Endocannabinoid-Like Molecules in Energy Homeostasis and Metabolic Regulation: A Nutritional Perspective. Annu Rev Nutr. 41:177–202. 2021.PubMed/NCBI View Article : Google Scholar | |
Murillo-Rodríguez E: The Endocannabinoid System as Prognostic Biomarker of the Obstructive Sleep Apnea Morbidity in COVID-19-Recovered Individuals. Sleep Vigil. 5:205–211. 2021.PubMed/NCBI View Article : Google Scholar | |
Wu YQ, Wang B, Song L, Wang Q, Chen XY and Liu ZL: A study on the endogenous cannabinoid system synthetic and catabolic enzyme levels in patients with obstructive sleep apnea. Zhonghua Jie He He Hu Xi Za Zhi. 34:359–361. 2011.PubMed/NCBI(In Chinese). | |
Gonzaga CC, Gaddam KK, Ahmed MI, Pimenta E, Thomas SJ, Harding SM, Oparil S, Cofield SS and Calhoun DA: Severity of obstructive sleep apnea is related to aldosterone status in subjects with resistant hypertension. J Clin Sleep Med. 6:363–368. 2010.PubMed/NCBI | |
Reiss AB, Carsons SE, Anwar K, Rao S, Edelman SD, Zhang H, Fernandez P, Cronstein BN and Chan ES: Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages. Arthritis Rheum. 58:3675–3683. 2008.PubMed/NCBI View Article : Google Scholar | |
Lee EJ, Heo W, Kim JY, Kim H, Kang MJ, Kim BR, Kim JH, Park DY, Kim CH, Yoon JH and Cho HJ: Alteration of inflammatory mediators in the upper and lower airways under chronic intermittent hypoxia: Preliminary Animal Study. Mediators Inflamm. 2017(4327237)2017.PubMed/NCBI View Article : Google Scholar | |
Papandreou C: Independent associations between fatty acids and sleep quality among obese patients with obstructive sleep apnoea syndrome. J Sleep Res. 22:569–572. 2013.PubMed/NCBI View Article : Google Scholar | |
Lebkuchen A, Carvalho VM, Venturini G, Salgueiro JS, Freitas LS, Dellavance A, Martins FC, Lorenzi-Filho G, Cardozo KHM and Drager LF: Metabolomic and lipidomic profile in men with obstructive sleep apnoea: Implications for diagnosis and biomarkers of cardiovascular risk. Sci Rep. 8(11270)2018.PubMed/NCBI View Article : Google Scholar | |
Xu H, Zheng X, Qian Y, Guan J, Yi H, Zou J, Wang Y, Meng L, Zhao A, Yin S and Jia W: Metabolomics Profiling for Obstructive Sleep Apnea and Simple Snorers. Sci Rep. 6(30958)2016.PubMed/NCBI View Article : Google Scholar | |
Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP, Thompson CB and Rabinowitz JD: Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci USA. 110:8882–8887. 2013.PubMed/NCBI View Article : Google Scholar | |
Chen J, Chen J, Huang J, Li Z, Gong Y, Zou B, Liu X, Ding L, Li P, Zhu Z, et al: HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Aging (Albany NY). 11:10839–10860. 2019.PubMed/NCBI View Article : Google Scholar | |
Ackerman D, Tumanov S, Qiu B, Michalopoulou E, Spata M, Azzam A, Xie H, Simon MC and Kamphorst JJ: Triglycerides Promote Lipid Homeostasis during Hypoxic Stress by Balancing Fatty Acid Saturation. Cell Rep. 24:2596–2605.e5. 2018.PubMed/NCBI View Article : Google Scholar | |
Le TT, Berg NK, Harting MT, Li X, Eltzschig HK and Yuan X: Purinergic Signaling in Pulmonary Inflammation. Front Immunol. 10(1633)2019.PubMed/NCBI View Article : Google Scholar | |
Hanidziar D and Robson SC: Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol Gastrointest Liver Physiol. 321:G200–G212. 2021.PubMed/NCBI View Article : Google Scholar | |
Guieu R, Deharo JC, Maille B, Crotti L, Torresani E, Brignole M and Parati G: Adenosine and the Cardiovascular System: The Good and the Bad. J Clin Med. 9(1366)2020.PubMed/NCBI View Article : Google Scholar | |
Vecchio EA, White PJ and May LT: The adenosine A(2B) G protein-coupled receptor: Recent advances and therapeutic implications. Pharmacol Ther. 198:20–33. 2019.PubMed/NCBI View Article : Google Scholar | |
Bahreyni A, Avan A, Shabani M, Ryzhikov M, Fiuji H, Soleimanpour S, Khazaei M and Hassanian SM: Therapeutic potential of A2 adenosine receptor pharmacological regulators in the treatment of cardiovascular diseases, recent progress, and prospective. J Cell Physiol. 234:1295–1299. 2019.PubMed/NCBI View Article : Google Scholar | |
Sacramento JF, Gonzalez C, Gonzalez-Martin MC and Conde SV: Adenosine Receptor Blockade by Caffeine Inhibits Carotid Sinus Nerve Chemosensory Activity in Chronic Intermittent Hypoxic Animals. Adv Exp Med Biol. 860:133–137. 2015.PubMed/NCBI View Article : Google Scholar | |
Conde SV, Monteiro EC and Sacramento JF: Purines and Carotid Body: New Roles in Pathological Conditions. Front Pharmacol. 8(913)2017.PubMed/NCBI View Article : Google Scholar | |
Li XC, Hong FF, Tu YJ, Li YA, Ma CY, Yu CY, Fang L, Chen JY, Li ZL, Bao SJ, et al: Blockade of adenosine A(2A) receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice. Exp Neurol. 350(113929)2022.PubMed/NCBI View Article : Google Scholar | |
Aranda JV and Beharry KD: Pharmacokinetics, pharmacodynamics and metabolism of caffeine in newborns. Semin Fetal Neonatal Med. 25(101183)2020.PubMed/NCBI View Article : Google Scholar | |
Kobayashi S and Millhorn DE: Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. A potential role in cell protection. J Biol Chem. 274:20358–20365. 1999.PubMed/NCBI View Article : Google Scholar | |
Nadeem A, Fan M, Ansari HR, Ledent C and Jamal Mustafa S: Enhanced airway reactivity and inflammation in A2A adenosine receptor-deficient allergic mice. Am J Physiol Lung Cell Mol Physiol. 292:L1335–L1344. 2007.PubMed/NCBI View Article : Google Scholar | |
Marshall NS, Yee BJ, Desai AV, Buchanan PR, Wong KK, Crompton R, Melehan KL, Zack N, Rao SG, Gendreau RM, et al: Two randomized placebo-controlled trials to evaluate the efficacy and tolerability of mirtazapine for the treatment of obstructive sleep apnea. Sleep. 31:824–831. 2008.PubMed/NCBI View Article : Google Scholar | |
Kent BD, Ryan S and McNicholas WT: Obstructive sleep apnea and inflammation: relationship to cardiovascular co-morbidity. Respir Physiol Neurobiol. 178:475–481. 2011.PubMed/NCBI View Article : Google Scholar | |
Peng L, Li Y, Li X, Du Y, Li L, Hu C, Zhang J, Qin Y, Wei Y and Zhang H: Extracellular vesicles derived from intermittent hypoxia-treated red blood cells impair endothelial function through regulating eNOS phosphorylation and ET-1 expression. Cardiovasc Drugs Ther. 35:901–913. 2021.PubMed/NCBI View Article : Google Scholar | |
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H and Yin Q: Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther. 8(218)2023.PubMed/NCBI View Article : Google Scholar | |
Popadic V, Brajkovic M, Klasnja S, Milic N, Rajovic N, Lisulov DP, Divac A, Ivankovic T, Manojlovic A, Nikolic N, et al: Correlation of dyslipidemia and inflammation with obstructive sleep apnea severity. Front Pharmacol. 13(897279)2022.PubMed/NCBI View Article : Google Scholar | |
Sun X, Wang C, He Y, Chen K and Miao Y: Effect of inflammatory cytokines and plasma metabolome on OSA: A bidirectional two-sample Mendelian randomization study and mediation analysis. Front Immunol. 15(1416870)2024.PubMed/NCBI View Article : Google Scholar | |
Andrade RGS, Viana FM, Nascimento JA, Drager LF, Moffa A, Brunoni AR, Genta PR and Lorenzi-Filho G: Nasal vs Oronasal CPAP for OSA Treatment: A Meta-Analysis. Chest. 153:665–674. 2018.PubMed/NCBI View Article : Google Scholar | |
Shen C, Ou Y, Ouyang R and Zong D: Prevalence and characteristics of pain in moderate-to-severe obstructive sleep apnea patients and effect of CPAP treatment. Sci Rep. 13(15758)2023.PubMed/NCBI View Article : Google Scholar | |
Lorenzi-Filho G, Almeida FR and Strollo PJ: Treating OSA: Current and emerging therapies beyond CPAP. Respirology. 22:1500–1507. 2017.PubMed/NCBI View Article : Google Scholar | |
Chang JL, Goldberg AN, Alt JA, Mohammed A, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, et al: International Consensus Statement on Obstructive Sleep Apnea. Int Forum Allergy Rhinol. 13:1061–1482. 2023.PubMed/NCBI View Article : Google Scholar | |
MacKay S, Carney AS, Catcheside PG, Chai-Coetzer CL, Chia M, Cistulli PA, Hodge JC, Jones A, Kaambwa B, Lewis R, et al: Effect of multilevel upper airway surgery vs medical management on the apnea-hypopnea index and patient-reported daytime sleepiness among patients with moderate or severe obstructive sleep apnea: The SAMS Randomized Clinical Trial. JAMA. 324:1168–1179. 2020.PubMed/NCBI View Article : Google Scholar | |
Sánchez AI, Martínez P, Miró E, Bardwell WA and Buela-Casal G: CPAP and behavioral therapies in patients with obstructive sleep apnea: Effects on daytime sleepiness, mood, and cognitive function. Sleep Med Rev. 13:223–233. 2009.PubMed/NCBI View Article : Google Scholar | |
Schmickl CN, Landry SA, Orr JE, Chin K, Murase K, Verbraecken J, Javaheri S, Edwards BA, Owens RL and Malhotra A: Acetazolamide for OSA and Central Sleep Apnea: A Comprehensive Systematic Review and Meta-Analysis. Chest. 158:2632–2645. 2020.PubMed/NCBI View Article : Google Scholar | |
Ulrich S, Nussbaumer-Ochsner Y, Vasic I, Hasler E, Latshang TD, Kohler M, Muehlemann T, Wolf M and Bloch KE: Cerebral oxygenation in patients with OSA: effects of hypoxia at altitude and impact of acetazolamide. Chest. 146:299–308. 2014.PubMed/NCBI View Article : Google Scholar | |
Chapman JL, Vakulin A, Hedner J, Yee BJ and Marshall NS: Modafinil/armodafinil in obstructive sleep apnoea: A systematic review and meta-analysis. Eur Respir J. 47:1420–1428. 2016.PubMed/NCBI View Article : Google Scholar | |
Mashaqi S, Patel SI, Combs D, Estep L, Helmick S, Machamer J and Parthasarathy S: The hypoglossal nerve stimulation as a novel therapy for treating obstructive sleep apnea-a literature review. Int J Environ Res Public Health. 18(1642)2021.PubMed/NCBI View Article : Google Scholar | |
Akinnusi ME, Laporta R and El-Solh AA: Lectin-like oxidized low-density lipoprotein receptor-1 modulates endothelial apoptosis in obstructive sleep apnea. Chest. 140:1503–1510. 2011.PubMed/NCBI View Article : Google Scholar | |
Feres MC, Fonseca FA, Cintra FD, Mello-Fujita L, de Souza AL, De Martino MC, Tufik S and Poyares D: An assessment of oxidized LDL in the lipid profiles of patients with obstructive sleep apnea and its association with both hypertension and dyslipidemia, and the impact of treatment with CPAP. Atherosclerosis. 241:342–349. 2015.PubMed/NCBI View Article : Google Scholar | |
Trevethick MA, Mantell SJ, Stuart EF, Barnard A, Wright KN and Yeadon M: Treating lung inflammation with agonists of the adenosine A2A receptor: Promises, problems and potential solutions. Br J Pharmacol. 155:463–474. 2008.PubMed/NCBI View Article : Google Scholar | |
Guo D, Mulder-Krieger T, IJzerman AP and Heitman LH: Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol. 166:1846–1859. 2012.PubMed/NCBI View Article : Google Scholar | |
de Lera Ruiz M, Lim YH and Zheng J: Adenosine A2A receptor as a drug discovery target. J Med Chem. 57:3623–3650. 2014.PubMed/NCBI View Article : Google Scholar | |
Al-Attraqchi OHA, Attimarad M, Venugopala KN, Nair A and Al-Attraqchi NHA: Adenosine A2A receptor as a potential drug target-current status and future perspectives. Curr Pharm Des. 25:2716–2740. 2019.PubMed/NCBI View Article : Google Scholar | |
Kohler M and Stradling JR: Mechanisms of vascular damage in obstructive sleep apnea. Nat Rev Cardiol. 7:677–685. 2010.PubMed/NCBI View Article : Google Scholar | |
Gambino F, Zammuto MM, Virzì A, Conti G and Bonsignore MR: Treatment options in obstructive sleep apnea. Intern Emerg Med. 17:971–978. 2022.PubMed/NCBI View Article : Google Scholar |