
Role of sirtuin 1 in depression‑induced coronary heart disease: Molecular pathways and therapeutic potential (Review)
- Authors:
- Shijie Zheng
- Linlin Yang
- Qiuting Dai
- Xiangyan Li
- Takayoshi Masuoka
- Jianfeng Lv
-
Affiliations: Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China, Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China, Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920‑0293, Japan - Published online on: January 14, 2025 https://doi.org/10.3892/br.2025.1924
- Article Number: 46
-
Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Goldston K and Baillie AJ: Depression and coronary heart disease: A review of the epidemiological evidence, explanatory mechanisms and management approaches. Clin Psychol Rev. 28:288–306. 2008.PubMed/NCBI View Article : Google Scholar | |
Pearce M, Garcia L, Abbas A, Strain T, Schuch FB, Golubic R, Kelly P, Khan S, Utukuri M, Laird Y, et al: Association between physical activity and risk of depression: A systematic review and meta-analysis. JAMA Psychiatry. 79:550–559. 2022.PubMed/NCBI View Article : Google Scholar | |
Li R and Odell J: Environmental, genetic factors and depression. J Stud Res. 12:1–5. 2023. | |
Scott KM, de Jonge P, Stein DJ and Kessler RC: Mental Disorders Around the World: Facts and Figures from the WHO World Mental Health Surveys. Scott KM, de Jonge P, Stein DJ and Kessler RC (eds). Cambridge University Press, 2018. | |
Moffitt TE, Caspi A, Taylor A, Kokaua J, Milne BJ, Polanczyk G and Poulton R: How common are common mental disorders? Evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychol Med. 40:899–909. 2010.PubMed/NCBI View Article : Google Scholar | |
Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, et al: Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 70:1–25. 2017.PubMed/NCBI View Article : Google Scholar | |
Mensah GA, Fuster V, Murray CJL and Roth GA: Global Burden of Cardiovascular Diseases and Risks Collaborators. Global burden of cardiovascular diseases and risks, 1990-2022. J Am Coll Cardiol. 82:2350–2473. 2023.PubMed/NCBI View Article : Google Scholar | |
World Health Organization: Cardiovascular diseases (CVDs). Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). | |
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation. 141:E139–E596. 2020.PubMed/NCBI View Article : Google Scholar | |
Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, et al: Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation. 123:933–944. 2011.PubMed/NCBI View Article : Google Scholar | |
Li A, Rosella LC, Kurdyak P and Wodchis WP: Depression as a risk factor for physical illness and multimorbidity in a cohort with no prior comorbidity. Can J Psychiatry. 66:726–736. 2021.PubMed/NCBI View Article : Google Scholar | |
Herrman H, Patel V, Kieling C, Berk M, Buchweitz C, Cuijpers P, Furukawa TA, Kessler RC, Kohrt BA, Maj M, et al: Time for united action on depression: A lancet-world psychiatric association commission. Lancet. 399:957–1022. 2022.PubMed/NCBI View Article : Google Scholar | |
Penninx BW, Milaneschi Y, Lamers F and Vogelzangs N: Understanding the somatic consequences of depression: Biological mechanisms and the role of depression symptom profile. BMC Med. 11(129)2013.PubMed/NCBI View Article : Google Scholar | |
Dantzer R, O'Connor JC, Freund GG, Johnson RW and Kelley KW: From inflammation to sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci. 9:46–56. 2008.PubMed/NCBI View Article : Google Scholar | |
Sichko S, Bui TQ, Vinograd M, Shields GS, Saha K, Devkota S, Olvera-Alvarez HA, Carroll JE, Cole SW, Irwin MR and Slavich GM: Psychobiology of stress and adolescent depression (PSY SAD) study: Protocol overview for an fMRI-based multi-method investigation. Brain Behav Immun Health. 17(100334)2021.PubMed/NCBI View Article : Google Scholar | |
Bansal Y and Kuhad A: Mitochondrial dysfunction in depression. Curr Neuropharmacol. 14:610–618. 2016.PubMed/NCBI View Article : Google Scholar | |
Tan C, Yan Q, Ma Y, Fang J and Yang Y: Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol. 13(1015175)2022.PubMed/NCBI View Article : Google Scholar | |
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C and Zhang W: Epigenetic regulation in major depression and other stress-related disorders: Molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther. 8(309)2023.PubMed/NCBI View Article : Google Scholar | |
Shen R, Zhao N, Wang J, Guo P, Shen S, Liu D and Zou T: Association between level of depression and coronary heart disease, stroke risk and all-cause and cardiovascular mortality: Data from the 2005-2018 National health and nutrition examination survey. Front Cardiovasc Med. 9(954563)2022.PubMed/NCBI View Article : Google Scholar | |
Cao H, Zhao H and Shen L: Depression increased risk of coronary heart disease: A meta-analysis of prospective cohort studies. Front Cardiovasc Med. 9(913888)2022.PubMed/NCBI View Article : Google Scholar | |
Xu L, Zhai X, Shi D and Zhang Y: Depression and coronary heart disease: Mechanisms, interventions, and treatments. Front Psychiatry. 15(1328048)2024.PubMed/NCBI View Article : Google Scholar | |
Harshfield EL, Pennells L, Schwartz JE, Willeit P, Kaptoge S, Bell S, Shaffer JA, Bolton T, Spackman S, Wassertheil-Smoller S, et al: Association between depressive symptoms and incident cardiovascular diseases. JAMA. 324:2396–2405. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Cui G and Wang Y, Gong Y and Wang Y: SIRT1 activation alleviates brain microvascular endothelial dysfunction in peroxisomal disorders. Int J Mol Med. 44:995–1005. 2019.PubMed/NCBI View Article : Google Scholar | |
Jha MK, Qamar A, Vaduganathan M, Charney DS and Murrough JW: Screening and management of depression in patients with cardiovascular disease. J Am Coll Cardiol. 73:1827–1845. 2019.PubMed/NCBI View Article : Google Scholar | |
Lu G, Li J, Zhang H, Zhao X, Yan LJ and Yang X: Role and possible mechanisms of Sirt1 in depression. Oxid Med Cell Longev. 2018(8596903)2018.PubMed/NCBI View Article : Google Scholar | |
Chan SH, Hung CH, Shih JY, Chu PM, Cheng YH, Lin HC and Tsai KL: SIRT1 inhibition causes oxidative stress and inflammation in patients with coronary artery disease. Redox Biol. 13:301–309. 2017.PubMed/NCBI View Article : Google Scholar | |
Singh V and Ubaid S: Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation. 43:1589–1598. 2020.PubMed/NCBI View Article : Google Scholar | |
Campagna R, Mazzanti L, Pompei V, Alia S, Vignini A and Emanuelli M: The multifaceted role of endothelial Sirt1 in vascular aging: An update. Cells. 13(1469)2024.PubMed/NCBI View Article : Google Scholar | |
Mao Y and Jiang P: The crisscross between p53 and metabolism in cancer. Acta Biochim Biophys Sin (Shanghai). 55:914–922. 2023.PubMed/NCBI View Article : Google Scholar | |
Mijit M, Caracciolo V, Melillo A, Amicarelli F and Giordano A: Role of p53 in the regulation of cellular senescence. Biomolecules. 10(420)2020.PubMed/NCBI View Article : Google Scholar | |
Yi J and Luo J: SIRT1 and p53, effect on cancer, senescence and beyond. Biochim Biophys Acta Proteins Proteom. 1804:1684–1689. 2010.PubMed/NCBI View Article : Google Scholar | |
Sullivan A and Lu X: ASPP: A new family of oncogenes and tumour suppressor genes. Br J Cancer. 96:196–200. 2007.PubMed/NCBI View Article : Google Scholar | |
Brockmueller A, Buhrmann C, Shayan P and Shakibaei M: Resveratrol induces apoptosis by modulating the reciprocal crosstalk between p53 and Sirt-1 in the CRC tumor microenvironment. Front Immunol. 14(1225530)2023.PubMed/NCBI View Article : Google Scholar | |
Sivakumar KK, Stanley JA, Behlen JC, Wuri L, Dutta S, Wu J, Arosh JA and Banu SK: Inhibition of Sirtuin-1 hyperacetylates p53 and abrogates Sirtuin-1-p53 interaction in Cr(VI)-induced apoptosis in the ovary. Reprod Toxicol. 109:121–134. 2022.PubMed/NCBI View Article : Google Scholar | |
Dilmac S, Kuscu N, Caner A, Yildirim S, Yoldas B, Farooqi AA and Tanriover G: SIRT1/FOXO signaling pathway in breast cancer progression and metastasis. Int J Mol Sci. 23(10227)2022.PubMed/NCBI View Article : Google Scholar | |
Mizani S, Keshavarz A, Vazifeh Shiran N, Bashash D and Allahbakhshian Farsani M: Expression changes of SIRT1 and FOXO3a significantly correlate with oxidative stress resistance genes in AML patients. Indian J Hematol Blood Transfus. 39:392–401. 2023.PubMed/NCBI View Article : Google Scholar | |
Chen L, Li S, Zhu J, You A, Huang X, Yi X and Xue M: Mangiferin prevents myocardial infarction-induced apoptosis and heart failure in mice by activating the Sirt1/FoxO3a pathway. J Cell Mol Med. 25:2944–2955. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Liu Y, Zhu G, Liang Y, Liu B, Wu Y, Han M, Sun W, Han Y, Chen G and Jiang J: SIRT1 downregulation mediated Manganese-induced neuronal apoptosis through activation of FOXO3a-Bim/PUMA axis. Sci Total Environ. 646:1047–1055. 2019.PubMed/NCBI View Article : Google Scholar | |
Alves-Fernandes DK and Jasiulionis MG: The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci. 20(3153)2019.PubMed/NCBI View Article : Google Scholar | |
Qi F, Jiang X, Tong T, Chang H and Li RX: MiR-204 inhibits inflammation and cell apoptosis in retinopathy rats with diabetic retinopathy by regulating Bcl-2 and SIRT1 expressions. Eur Rev Med Pharmacol Sci. 24:6486–6493. 2020.PubMed/NCBI View Article : Google Scholar | |
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, et al: The sirtuin family in health and disease. Signal Transduct Target Ther. 7(402)2022.PubMed/NCBI View Article : Google Scholar | |
Chen G, Zhang B, Xu H, Sun Y, Shi Y, Luo Y, Jia H and Wang F: Suppression of Sirt1 sensitizes lung cancer cells to WEE1 inhibitor MK-1775-induced DNA damage and apoptosis. Oncogene. 36:6863–6872. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD and Chen J: Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 8:1025–1031. 2006.PubMed/NCBI View Article : Google Scholar | |
Imperatore F, Maurizio J, Vargas Aguilar S, Busch CJ, Favret J, Kowenz-Leutz E, Cathou W, Gentek R, Perrin P, Leutz A, et al: SIRT1 regulates macrophage self-renewal. EMBO J. 36:2353–2372. 2017.PubMed/NCBI View Article : Google Scholar | |
Yang S, Moon S, Hur SC and Jeong SM: Fatty acid oxidation regulates cellular senescence by modulating the autophagy-SIRT1 axis. BMB Rep. 56:651–656. 2023.PubMed/NCBI View Article : Google Scholar | |
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14(648)2023.PubMed/NCBI View Article : Google Scholar | |
Guo H, Ding H, Tang X, Liang M, Li S, Zhang J and Cao J: Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer. 12:1415–1422. 2021.PubMed/NCBI View Article : Google Scholar | |
Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M and Misso G: Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 98:139–153. 2020.PubMed/NCBI View Article : Google Scholar | |
Ding X, Zhu C, Wang W, Li M, Ma C and Gao B: SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res. 199(106957)2024.PubMed/NCBI View Article : Google Scholar | |
Jiang Y, Botchway BOA, Hu Z and Fang M: Overexpression of SIRT1 inhibits corticosterone-induced autophagy. Neuroscience. 411:11–22. 2019.PubMed/NCBI View Article : Google Scholar | |
Chung S, Yao H, Caito S, Hwang JW, Arunachalam G and Rahman I: Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch Biochem Biophys. 501:79–90. 2010.PubMed/NCBI View Article : Google Scholar | |
Korbecki J, Bobiński R and Dutka M: Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res. 68:443–458. 2019.PubMed/NCBI View Article : Google Scholar | |
Tian Y, Ma J, Wang W, Zhang L, Xu J, Wang K and Li D: Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Mol Cell Biochem. 422:75–84. 2016.PubMed/NCBI View Article : Google Scholar | |
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY and Bian JS: Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol. 38(101813)2021.PubMed/NCBI View Article : Google Scholar | |
Murphy CE, Lawther AJ, Webster MJ, Asai M, Kondo Y, Matsumoto M, Walker AK and Weickert CS: Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. J Neuroinflammation. 17(215)2020.PubMed/NCBI View Article : Google Scholar | |
Liu T, Zhang L, Joo D and Sun SC: NF-κB signaling in inflammation. Signal Transduct Target Ther. 2(17023)2017.PubMed/NCBI View Article : Google Scholar | |
Kauppinen A, Suuronen T, Ojala J, Kaarniranta K and Salminen A: Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 25:1939–1948. 2013.PubMed/NCBI View Article : Google Scholar | |
Jalgaonkar MP, Parmar UM, Kulkarni YA and Oza MJ: SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res. 175(106014)2022.PubMed/NCBI View Article : Google Scholar | |
Jia D, Ping W, Wang M, Wang D, Zhang L and Cao Y: SIRT1 mediates the inflammatory response of macrophages and regulates the TIMP3/ADAM17 pathway in atherosclerosis. Exp Cell Res. 442(114253)2024.PubMed/NCBI View Article : Google Scholar | |
Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J and Zhai J: Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal. 21(185)2023.PubMed/NCBI View Article : Google Scholar | |
Hardeland R: Aging, melatonin, and the pro-and anti-inflammatory networks. Int J Mol Sci. 20(1223)2019.PubMed/NCBI View Article : Google Scholar | |
Rovira-Llopis S, Apostolova N, Bañuls C, Muntané J, Rocha M and Victor VM: Mitochondria, the NLRP3 inflammasome, and sirtuins in type 2 diabetes: New therapeutic targets. Antioxid Redox Signal. 29:749–791. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Zhang H, Li S, Huang K, Jiang L and Wang Y: Metformin alleviates LPS-induced acute lung injury by regulating the SIRT1/NF-κB/NLRP3 pathway and inhibiting endothelial cell pyroptosis. Front Pharmacol. 13(801337)2022.PubMed/NCBI View Article : Google Scholar | |
Luo XY, Qu SL, Tang ZH, Zhang Y, Liu MH, Peng J, Tang H, Yu KL, Zhang C, Ren Z and Jiang ZS: SIRT1 in cardiovascular aging. Clin Chim Acta. 437:106–114. 2014.PubMed/NCBI View Article : Google Scholar | |
Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim LJ, Osborne B, Joshi S, Lu Y, et al: Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging. Cell. 173:74–89.e20. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhu YJ, Huang J, Chen R, Zhang Y, He X, Duan WX, Zou YL, Sun MM, Sun HL, Cheng SM, et al: Autophagy dysfunction contributes to NLRP1 inflammasome-linked depressive-like behaviors in mice. J Neuroinflammation. 21(6)2024.PubMed/NCBI View Article : Google Scholar | |
Strothers HS III: Depression in the primary care setting. Ethn Dis. 12:S28–S30. 2002.PubMed/NCBI | |
Schmauβ M: Depression and Parkinson's disease. Fortschr Neurol Psychiatr. 90:145–146. 2022.PubMed/NCBI View Article : Google Scholar : (In German). | |
El-Battrawy I, Behnes M and Akin I: Depression and incident cardiovascular disease. JAMA. 325:1679–1680. 2021.PubMed/NCBI View Article : Google Scholar | |
Taqueti VR and Di Carli MF: Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol. 72:2625–2641. 2018.PubMed/NCBI View Article : Google Scholar | |
Halaris A: Inflammation-associated co-morbidity between depression and cardiovascular disease. Curr Top Behav Neurosci. 31:45–70. 2017.PubMed/NCBI View Article : Google Scholar | |
Hackett RA and Steptoe A: Psychosocial factors in diabetes and cardiovascular risk. Curr Cardiol Rep. 18(95)2016.PubMed/NCBI View Article : Google Scholar | |
Lawrence S and Scofield RH: Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav Immun Health. 41(100849)2024.PubMed/NCBI View Article : Google Scholar | |
Wirtz PH and von Känel R: Psychological stress, inflammation, and coronary heart disease. Curr Cardiol Rep. 19(111)2017.PubMed/NCBI View Article : Google Scholar | |
Tonhajzerova I, Sekaninova N, Bona Olexova L and Visnovcova Z: Novel insight into neuroimmune regulatory mechanisms and biomarkers linking major depression and vascular diseases: The dilemma continues. Int J Mol Sci. 21(2317)2020.PubMed/NCBI View Article : Google Scholar | |
Ramachandruni S, Handberg E and Sheps DS: Acute and chronic psychological stress in coronary disease. Curr Opin Cardiol. 19:494–499. 2004.PubMed/NCBI View Article : Google Scholar | |
Gianaros PJ, Hariri AR, Sheu LK, Muldoon MF, Sutton-Tyrrell K and Manuck SB: Preclinical atherosclerosis covaries with individual differences in reactivity and functional connectivity of the amygdala. Biol Psychiatry. 65:943–950. 2009.PubMed/NCBI View Article : Google Scholar | |
Levin A: Amygdala activity may predict future cardiovascular events. Psychiatr News. 52:1. 2017. | |
Pizzi C, Manzoli L, Mancini S, Bedetti G, Fontana F and Costa GM: Autonomic nervous system, inflammation and preclinical carotid atherosclerosis in depressed subjects with coronary risk factors. Atherosclerosis. 212:292–298. 2010.PubMed/NCBI View Article : Google Scholar | |
Pan Y, Chen Y, Wu S, Ying P, Zhang Z, Tan X and Zhu J: Prevalence and management of depressive symptoms in coronary heart disease patients and relationship with cardiovascular prognosis: A prospective cohort study. BMC Psychiatry. 24(644)2024.PubMed/NCBI View Article : Google Scholar | |
Compare A, Proietti R, Germani E and Janeway D: Anxiety and depression: Risk factors for cardiovascular disease. In: Stress Proof the Heart: Behavioral Interventions for Cardiac Patients. Vol 9781441956507. Springer, New York, NY, pp139-166, 2012. | |
Dickens C: Depression in people with coronary heart disease: Prognostic significance and mechanisms. Curr Cardiol Rep. 17(83)2015.PubMed/NCBI View Article : Google Scholar | |
De Martini GA, Grisante DL, Gonçalves ALP, D'Agostino F, Lopes JL, Santos VB and Lopes CT: Relationships between depressive symptoms, appetite, and quality of life in heart failure. West J Nurs Res. 45:416–424. 2023.PubMed/NCBI View Article : Google Scholar | |
Xu Q, Chen C, You R, Ni L, Chen S and Peng B: Causal association between major depressive disorder and coronary heart disease: A two-sample bidirectional mendelian randomization study. BMC Med Genomics. 16(183)2023.PubMed/NCBI View Article : Google Scholar | |
Meng LB, Zhang YM, Luo Y, Gong T and Liu DP: Chronic Stress A Potential Suspect Zero of Atherosclerosis: A Systematic Review. Front Cardiovasc Med: Dec 20, 2021 (Epub ahead of print) doi: 10.3389/fcvm.2021.738654. | |
Mbiydzenyuy NE and Qulu LA: Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab Brain Dis. 39:1613–1636. 2024.PubMed/NCBI View Article : Google Scholar | |
Hering D, Seravalle G, Grassi G and Narkiewicz K: Sympathetic Activity in Hypertension and Heart Failure. Springer Nature, Heidelberg, pp107-126, 2023. | |
Osimo EF, Baxter LJ, Lewis G, Jones PB and Khandaker GM: Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol Med. 49:1958–1970. 2019.PubMed/NCBI View Article : Google Scholar | |
Correia AS, Cardoso A and Vale N: Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants (Basel). 12(470)2023.PubMed/NCBI View Article : Google Scholar | |
Chocano-Bedoya PO, Mirzaei F, O'Reilly EJ, Lucas M, Okereke OI, Hu FB, Rimm EB and Ascherio A: C-reactive protein, interleukin-6, soluble tumor necrosis factor α receptor 2 and incident clinical depression. J Affect Disord. 163:25–32. 2014.PubMed/NCBI View Article : Google Scholar | |
Li G, Zhang L and Liu M: Meta-analysis on inflammation and autonomic nervous system of coronary heart disease combined with depression. BMJ Open. 14(e079980)2024.PubMed/NCBI View Article : Google Scholar | |
Higashi Y: Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease. Antioxidants (Basel). 11(1958)2022.PubMed/NCBI View Article : Google Scholar | |
Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y and Dou X: Orientin alleviates ox-LDL-induced oxidative stress, inflammation and apoptosis in human vascular endothelial cells by regulating Sestrin 1 (SESN1)-mediated autophagy. J Mol Histol. 55:109–120. 2024.PubMed/NCBI View Article : Google Scholar | |
Kwong ASF, López-López JA, Hammerton G, Manley D, Timpson NJ, Leckie G and Pearson RM: Genetic and environmental risk factors associated with trajectories of depression symptoms from adolescence to young adulthood. JAMA Netw Open. 2(e196587)2019.PubMed/NCBI View Article : Google Scholar | |
Lei Y, Wang J, Wang D, Li C, Liu B, Fang X, You J, Guo M and Lu XY: SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex. Mol Psychiatry. 25:1094–1111. 2020.PubMed/NCBI View Article : Google Scholar | |
Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, Kobayashi A and Watanabe Y: Hippocampal Sirtuin 1 signaling mediates depression-like behavior. Biol Psychiatry. 80:815–826. 2016.PubMed/NCBI View Article : Google Scholar | |
Singh P, Hanson PS and Morris CM: SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease. BMC Neurosci. 18(46)2017.PubMed/NCBI View Article : Google Scholar | |
Qiu X, Lu P, Zeng X, Jin S and Chen X: Study on the mechanism for SIRT1 during the process of exercise improving depression. Brain Sci. 13(719)2023.PubMed/NCBI View Article : Google Scholar | |
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y and Huang H: Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl). 100:537–553. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Anoopkumar-Dukie S and Davey AK: Sirt1 and sirt2 modulators: Potential anti-inflammatory treatment for depression? Biomolecules. 11(353)2021.PubMed/NCBI View Article : Google Scholar | |
Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, Zhao J, Ji P, Zhong L, Licinio J and Xie P: Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J Neuroinflammation. 19(41)2022.PubMed/NCBI View Article : Google Scholar | |
Ma Z, Feng D, Rui W and Wang Z: Baicalin attenuates chronic unpredictable mild stress-induced hippocampal neuronal apoptosis through regulating SIRT1/PARP1 signaling pathway. Behav Brain Res. 441(114299)2023.PubMed/NCBI View Article : Google Scholar | |
Geng M, Shao Q, Fu J, Gu J, Feng L, Zhao L, Liu C, Mu J, Zhang X, Zhao M, et al: Down-regulation of MKP-1 in hippocampus protects against stress-induced depression-like behaviors and neuroinflammation. Transl Psychiatry. 14(130)2024.PubMed/NCBI View Article : Google Scholar | |
Tartt AN, Mariani MB, Hen R, Mann JJ and Boldrini M: Dysregulation of adult hippocampal neuroplasticity in major depression: Pathogenesis and therapeutic implications. Mol Psychiatry. 27:2689–2699. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhang K, Wang F, Zhai M, He M, Hu Y, Feng L, Li Y, Yang J and Wu C: Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression. Theranostics. 13:1059–1075. 2023.PubMed/NCBI View Article : Google Scholar | |
Saharan S, Jhaveri DJ and Bartlett PF: SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus. J Neurosci Res. 91:642–659. 2013.PubMed/NCBI View Article : Google Scholar | |
Shen J, Hao C, Yuan S, Chen W, Tong T, Chen Y, Shahzad Aslam M, Yan S, Li J, Zeng J, et al: Acupuncture alleviates CUMS-induced depression-like behaviors of rats by regulating oxidative stress, neuroinflammation and ferroptosis. Brain Res. 1826(148715)2024.PubMed/NCBI View Article : Google Scholar | |
Li C, Wang F, Miao P, Yan L, Liu S, Wang X, Jin Z and Gu Z: miR-138 increases depressive-like behaviors by targeting SIRT1 in hippocampus. Neuropsychiatr Dis Treat. 16:949–957. 2020.PubMed/NCBI View Article : Google Scholar | |
Wu X, Zhang Y, Wang J, Qin L, Li Y, He Q, Zhang T, Wang Y, Song L, Ji L, et al: Role of SIRT1-mediated synaptic plasticity and neurogenesis: Sex-differences in antidepressant-like efficacy of catalpol. Phytomedicine. 135(156120)2024.PubMed/NCBI View Article : Google Scholar | |
Michán S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, et al: SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci. 30:9695–9707. 2010.PubMed/NCBI View Article : Google Scholar | |
Guo H, Deji C, Peng H, Zhang J, Chen Y, Zhang Y and Wang Y: The role of SIRT1 in the basolateral amygdala in depression-like behaviors in mice. Genes Brain Behav. 20(e12765)2021.PubMed/NCBI View Article : Google Scholar | |
Erickson KI, Miller DL and Roecklein KA: The aging hippocampus: Interactions between exercise, depression, and BDNF. Neuroscientist. 18:82–97. 2012.PubMed/NCBI View Article : Google Scholar | |
Ye S, Fang L, Xie S, Hu Y, Chen S, Amin N, Fang M and Hu Z: Resveratrol alleviates postpartum depression-like behavior by activating autophagy via SIRT1 and inhibiting AKT/mTOR pathway. Behav Brain Res. 438(114208)2023.PubMed/NCBI View Article : Google Scholar | |
Wang J, Li J, Cao N, Li Z, Han J and Li L: Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. Onco Targets Ther. 11:7777–7786. 2018.PubMed/NCBI View Article : Google Scholar | |
Tabassum S, Misrani A, Huang HX, Zhang ZY, Li QW and Long C: Resveratrol attenuates chronic unpredictable mild stress-induced alterations in the SIRT1/PGC1α/SIRT3 pathway and associated mitochondrial dysfunction in mice. Mol Neurobiol. 60:5102–5116. 2023.PubMed/NCBI View Article : Google Scholar | |
Shen J, Xu L, Qu C, Sun H and Zhang J: Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav Brain Res. 349:1–7. 2018.PubMed/NCBI View Article : Google Scholar | |
Takahashi K, Kurokawa K, Hong L, Miyagawa K, Mochida-Saito A, Takeda H and Tsuji M: Hippocampal and gut AMPK activation attenuates enterocolitis-like symptoms and co-occurring depressive-like behavior in ulcerative colitis model mice: Involvement of brain-gut autophagy. Exp Neurol. 373(114671)2024.PubMed/NCBI View Article : Google Scholar | |
Kim HD, Wei J, Call T, Call T, Ma X, Quintus NT, Summers AJ, Carotenuto S, Johnson R, Nguyen A, et al: SIRT1 coordinates transcriptional regulation of neural activity and modulates depression-like behaviors in the nucleus accumbens. Biol Psychiatry. 96:495–505. 2024.PubMed/NCBI View Article : Google Scholar | |
Kim HD, Hesterman J, Call T, Magazu S, Keeley E, Armenta K, Kronman H, Neve RL, Nestler EJ and Ferguson D: SIRT1 mediates depression-like behaviors in the nucleus accumbens. J Neurosci. 36:8441–8452. 2016.PubMed/NCBI View Article : Google Scholar | |
Nowacka-Chmielewska M, Grabowska K, Grabowski M, Meybohm P, Burek M and Małecki A: Running from stress: Neurobiological mechanisms of exercise-induced stress resilience. Int J Mol Sci. 23(13348)2022.PubMed/NCBI View Article : Google Scholar | |
Yamamoto M and Takahashi Y: The essential role of sirt1 in hypothalamic-pituitary axis. Front Endocrinol (Lausanne). 9(605)2018.PubMed/NCBI View Article : Google Scholar | |
Yu X, Hu Y, Huang W, Ye N, Yan Q, Ni W and Jiang X: Role of AMPK/SIRT1-SIRT3 signaling pathway in affective disorders in unpredictable chronic mild stress mice. Neuropharmacology. 165(107925)2020.PubMed/NCBI View Article : Google Scholar | |
Takaba R, Ibi D, Watanabe K, Hayakawa K, Nakasai G and Hiramatsu M: Role of sirtuin1 in impairments of emotion-related behaviors in mice with chronic mild unpredictable stress during adolescence. Physiol Behav. 257(113971)2022.PubMed/NCBI View Article : Google Scholar | |
Cordner ZA, Marshall-Thomas I, Boersma GJ, Lee RS, Potash JB and Tamashiro KLK: Fluoxetine and environmental enrichment similarly reverse chronic social stress-related depression- and anxiety-like behavior, but have differential effects on amygdala gene expression. Neurobiol Stress. 15(100392)2021.PubMed/NCBI View Article : Google Scholar | |
Ma B, Guo B, Chen Z and Li Y: SIRT1 regulates hypoxia-induced oxidative stress in cardiomyocytes via PI3K/MTOR signaling. Cell Mol Biol (Noisy-le-grand). 68:48–53. 2022.PubMed/NCBI View Article : Google Scholar | |
Opstad TB, Papotti B, Åkra S, Hansen CH, Braathen B, Tønnessen T, Solheim S and Seljeflot I: Sirtuin1, not NAMPT, possesses anti-inflammatory effects in epicardial, pericardial and subcutaneous adipose tissue in patients with CHD. J Transl Med. 21(644)2023.PubMed/NCBI View Article : Google Scholar | |
Kida Y and Goligorsky MS: Sirtuins, cell senescence, and vascular aging. Can J Cardiol. 32:634–641. 2016.PubMed/NCBI View Article : Google Scholar | |
Winnik S, Auwerx J, Sinclair DA and Matter CM: Protective effects of sirtuins in cardiovascular diseases: From bench to bedside. Eur Heart J. 36:3404–3412. 2015.PubMed/NCBI View Article : Google Scholar | |
Stein S, Schäfer N, Breitenstein A, Besler C, Winnik S, Lohmann C, Heinrich K, Brokopp CE, Handschin C, Landmesser U, et al: SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/-mice. Aging (Albany NY). 2:353–360. 2010.PubMed/NCBI View Article : Google Scholar | |
Gorenne I, Kumar S, Gray K, Figg N, Yu H, Mercer J and Bennett M: Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation. 127:386–396. 2013.PubMed/NCBI View Article : Google Scholar | |
Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, Leung S, Zhong Z, Zhao H, Sweitzer S, et al: SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PLoS One. 7(e46364)2012.PubMed/NCBI View Article : Google Scholar | |
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, Tang D and Chen R: Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 8(80)2018.PubMed/NCBI View Article : Google Scholar | |
Kitada M, Ogura Y and Koya D: The protective role of Sirt1 in vascular tissue: Its relationship to vascular aging and atherosclerosis. Aging (Albany NY). 8:2290–2307. 2016.PubMed/NCBI View Article : Google Scholar | |
Guarente L: Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med. 364:2235–2244. 2011.PubMed/NCBI View Article : Google Scholar | |
Houtkooper RH, Pirinen E and Auwerx J: Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 13:225–238. 2012.PubMed/NCBI View Article : Google Scholar | |
Yang X, Wei J, He Y, Jing T, Li Y, Xiao Y, Wang B, Wang W, Zhang J and Lin R: SIRT1 inhibition promotes atherosclerosis through impaired autophagy. Oncotarget. 8:51447–51461. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang SJ, Zhao XH, Chen W, Bo N, Wang XJ, Chi ZF and Wu W: Sirtuin 1 activation enhances the PGC-1α/mitochondrial antioxidant system pathway in status epilepticus. Mol Med Rep. 11:521–526. 2015.PubMed/NCBI View Article : Google Scholar | |
Dong YT, Cao K, Xiang J, Qi XL, Xiao Y, Yu WF, He Y, Hong W and Guan ZZ: Resveratrol attenuates the disruption of lipid metabolism observed in amyloid precursor protein/presenilin 1 mouse brains and cultured primary neurons exposed to Aβ. Neuroscience. 521:134–147. 2023.PubMed/NCBI View Article : Google Scholar | |
Zeng HT, Fu YC, Yu W, Lin JM, Zhou L, Liu L and Wang W: SIRT1 prevents atherosclerosis via liver-X-receptor and NF-κB signaling in a U937 cell model. Mol Med Rep. 8:23–28. 2013.PubMed/NCBI View Article : Google Scholar | |
Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, Li HL, Lv X, Zhang QJ, Zhang R, Wang Z, et al: SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res. 108:1180–1189. 2011.PubMed/NCBI View Article : Google Scholar | |
Xu W, Deng YY, Yang L, Zhao S, Liu J, Zhao Z, Wang L, Maharjan P, Gao S, Tian Y, et al: Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res. 166:451–458. 2015.PubMed/NCBI View Article : Google Scholar | |
Chen YX, Zhang M, Cai Y, Zhao Q and Dai W: The Sirt1 activator SRT1720 attenuates angiotensin II-induced atherosclerosis in apoE-/-mice through inhibiting vascular inflammatory response. Biochem Biophys Res Commun. 465:732–738. 2015.PubMed/NCBI View Article : Google Scholar | |
Nasiri M, Rauf M, Kamfiroozie H, Zibaeenezhad MJ and Jamali Z: SIRT1 gene polymorphisms associated with decreased risk of atherosclerotic coronary artery disease. Gene. 672:16–20. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen Y, He T, Zhang Z and Zhang J: Activation of SIRT1 by resveratrol alleviates pressure overload-induced cardiac hypertrophy via suppression of TGF-β1 signaling. Pharmacology. 106:667–681. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhang MJ, Zhou Y, Chen L, Wang X, Long CY, Pi Y, Gao CY, Li JC and Zhang LL: SIRT1 improves VSMC functions in atherosclerosis. Prog Biophys Mol Biol. 121:11–15. 2016.PubMed/NCBI View Article : Google Scholar | |
Qiang L, Lin HV, Kim-Muller JY, Welch CL, Gu W and Accili D: Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab. 14:758–767. 2011.PubMed/NCBI View Article : Google Scholar | |
Liu YP, Wen R, Liu CF, Zhang TN and Yang N: Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed Pharmacother. 164(114931)2023.PubMed/NCBI View Article : Google Scholar | |
Liang F, Kume S and Koya D: SIRT1 and insulin resistance. Nat Rev Endocrinol. 5:367–373. 2009.PubMed/NCBI View Article : Google Scholar | |
Gong H, Liu J, Xue Z, Wang W, Li C, Xu F, Du Y and Lyu X: SIRT3 attenuates coronary atherosclerosis in diabetic patients by regulating endothelial cell function. J Clin Lab Anal. 36(e24586)2022.PubMed/NCBI View Article : Google Scholar | |
Yu H, Gan D, Luo Z, Yang Q, An D, Zhang H, Hu Y, Ma Z, Zeng Q, Xu D and Ren H: α-Ketoglutarate improves cardiac insufficiency through NAD+-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Mol Med. 30(15)2024.PubMed/NCBI View Article : Google Scholar | |
Rodriguez-Miguelez P and Pollock JS: Adverse childhood events and cardiovascular diseases: The potential role of Sirt1. Am J Physiol Heart Circ Physiol. 321:H577–H579. 2021.PubMed/NCBI View Article : Google Scholar | |
Lo Iacono L, Visco-Comandini F, Valzania A, Viscomi MT, Coviello M, Giampà A, Roscini L, Bisicchia E, Siracusano A, Troisi A, et al: Adversity in childhood and depression: Linked through SIRT1. Transl Psychiatry. 5(e629)2015.PubMed/NCBI View Article : Google Scholar | |
Vicario A and Cerezo GH: The heart and brain connection: Contribution of cardiovascular disease to vascular depression-A narrative review. Heart and Mind. 7:126–131. 2023. | |
Piantella S, Dragano N, Marques M, McDonald SJ and Wright BJ: Prospective increases in depression symptoms and markers of inflammation increase coronary heart disease risk - The Whitehall II cohort study. J Psychosom Res. 151(110657)2021.PubMed/NCBI View Article : Google Scholar | |
Liu RT, Hernandez EM, Trout ZM, Kleiman EM and Bozzay ML: Depression, social support, and long-term risk for coronary heart disease in a 13-year longitudinal epidemiological study. Psychiatry Res. 251:36–40. 2017.PubMed/NCBI View Article : Google Scholar | |
Yu H, Li X, Ning B, Feng L, Ren Y, Li S, Kang Y, Ma J and Zhao M: SIRT1: A potential therapeutic target for coronary heart disease combined with anxiety or depression. J Drug Target: Dec 23, 2024 (Epub ahead of print). | |
Stanley SC, Brooks SD, Butcher JT, d'Audiffret AC, Frisbee SJ and Frisbee JC: Protective effect of sex on chronic stress- and depressive behavior-induced vascular dysfunction in BALB/cJ mice. J Appl Physiol. 117:959–970. 2014.PubMed/NCBI View Article : Google Scholar | |
Hori YS, Kuno A, Hosoda R and Horio Y: Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One. 8(e73875)2013.PubMed/NCBI View Article : Google Scholar | |
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et al: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 303:2011–2015. 2004.PubMed/NCBI View Article : Google Scholar | |
Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S and Sadoshima J: Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 122:2170–2182. 2010.PubMed/NCBI View Article : Google Scholar | |
Starodubtseva I, Meshkova M and Zuikova A: Pathogenetic mechanisms of repeated adverse cardiovascular events development in patients with coronary heart disease: The role of chronic inflammation. Folia Med (Plovdiv). 65:863–870. 2023.PubMed/NCBI View Article : Google Scholar | |
Kofod J, Elfving B, Nielsen EH, Mors O and Köhler-Forsberg O: Depression and inflammation: Correlation between changes in inflammatory markers with antidepressant response and long-term prognosis. Eur Neuropsychopharmacol. 54:116–125. 2022.PubMed/NCBI View Article : Google Scholar | |
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M and Tschöp MH: Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA. 105:9793–9798. 2008.PubMed/NCBI View Article : Google Scholar | |
Fan J, Guang H, Zhang H, Chen D, Ding L, Fan X, Xue F, Gan Z, Wang Y, Mao S, et al: SIRT1 mediates apelin-13 in ameliorating chronic normobaric hypoxia-induced anxiety-like behavior by suppressing NF-κB pathway in mice hippocampus. Neuroscience. 381:22–34. 2018.PubMed/NCBI View Article : Google Scholar | |
Askin L, Tibilli H, Tanriverdi O and Turkmen S: The relationship between coronary artery disease and SIRT1 protein. North Clin Istanb. 7:631–635. 2020.PubMed/NCBI View Article : Google Scholar | |
Sugimoto K, Yamada T, Kitazawa A and Fukuda Y: Metabolic syndrome and depression: Evidence from a cross-sectional study of real-world data in Japan. Environ Health Prev Med. 29(33)2024.PubMed/NCBI View Article : Google Scholar | |
Li X, Zhang S, Blander G, Tse JG, Krieger M and Guarente L: SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 28:91–106. 2007.PubMed/NCBI View Article : Google Scholar | |
Feige JN and Auwerx J: DisSIRTing on LXR and cholesterol metabolism. Cell Metab. 6:343–345. 2007.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhao X, O'Neil A, Turner A, Liu X and Berk M: Altered cardiac autonomic nervous function in depression. BMC Psychiatry. 13(187)2013.PubMed/NCBI View Article : Google Scholar | |
Rome D, Sales A, Leeds R, Usseglio J, Cornelius T, Monk C, Smolderen KG and Moise N: A narrative review of the association between depression and heart disease among women: Prevalence, mechanisms of action, and treatment. Curr Atheroscler Rep. 24:709–720. 2022.PubMed/NCBI View Article : Google Scholar | |
Yan J, Tang X, Zhou ZQ, Zhang J, Zhao Y, Li S and Luo A: Sirtuins functions in central nervous system cells under neurological disorders. Front Physiol. 13(886087)2022.PubMed/NCBI View Article : Google Scholar | |
Vinciguerra M, Santini MP, Martinez C, Pazienza V, Claycomb WC, Giuliani A and Rosenthal N: mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell. 11:139–149. 2012.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhao R, Wu C, Liang X, He L, Wang L and Wang X: Activation of the sirtuin silent information regulator 1 pathway inhibits pathological myocardial remodeling. Front Pharmacol. 14(1111320)2023.PubMed/NCBI View Article : Google Scholar | |
Shi S, Guan G, Wang J, Hui R, Zhang Y, Cui Q, Zhao J and Zhu L: Association of depression with hypertensive left ventricular hypertrophy in age, sex, and education level-specific differences. J Clin Hypertens (Greenwich). 25:715–724. 2023.PubMed/NCBI View Article : Google Scholar | |
Liu ZH, Zhang Y, Wang X, Fan XF, Zhang Y, Li X, Gong YS and Han LP: SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed Pharmacother. 118(109227)2019.PubMed/NCBI View Article : Google Scholar | |
Piao S, Lee I, Jin SA, Kim S, Nagar H, Choi SJ, Jeon BH and Kim CS: SIRT1 activation attenuates the cardiac dysfunction induced by endothelial cell-specific deletion of CRIF1. Biomedicines. 9(52)2021.PubMed/NCBI View Article : Google Scholar | |
Pintaningrum Y, Humaera NN, Rafiq A and Tanti A: OR10. Association between heart functional capacity with depression severity on patient with coronary artery disease. Eur Heart J. Suppl 23:2021. | |
Wang Y, Li Y, Ding H, Li D, Shen W and Zhang X: The current state of research on sirtuin-mediated autophagy in cardiovascular diseases. J Cardiovasc Dev Dis. 10(382)2023.PubMed/NCBI View Article : Google Scholar | |
Luo G, Jian Z, Zhu Y, Zhu Y, Chen B, Ma R, Tang F and Xiao Y: Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med. 43:2033–2043. 2019.PubMed/NCBI View Article : Google Scholar | |
Jiang G, Wang Y, Liu Q, Gu T, Liu S, Yin A and Zhang L: Autophagy: A new mechanism for esketamine as a depression therapeutic. Neuroscience. 498:214–223. 2022.PubMed/NCBI View Article : Google Scholar | |
Song X, Wei C, Huang H, Cao X, Chen Z, Chen Y and Wu B: Effects of resveratrol on tolerance to ischemia/reperfusion injury in aged male mice: Role of autophagy and apoptosis. Food Sci Nutr. 11:5938–5947. 2023.PubMed/NCBI View Article : Google Scholar | |
Do GM, Kwon EY, Kim HJ, Jeon SM, Ha TY, Park T and Choi MS: Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem Biophys Res Commun. 374:55–59. 2008.PubMed/NCBI View Article : Google Scholar | |
Shukla P, Akotkar L and Aswar U: Resveratrol attenuates early life stress induced depression in rats: Behavioural and neurochemical evidence. Neurosci Lett. 820(137606)2024.PubMed/NCBI View Article : Google Scholar | |
Raj P, Thandapilly SJ, Wigle J, Zieroth S and Netticadan T: A comprehensive analysis of the efficacy of resveratrol in atherosclerotic cardiovascular disease, myocardial infarction and heart failure. Molecules. 26(6600)2021.PubMed/NCBI View Article : Google Scholar | |
Gu Z, Chu L and Han Y: Therapeutic effect of resveratrol on mice with depression. Exp Ther Med. 17:3061–3064. 2019.PubMed/NCBI View Article : Google Scholar | |
Piao S, Kim S, Vu G, Lee M, Kim M, Jeon BH and Kim CS: SRT1720 alleviates endothelial crif1 deficiency-induced cardiac function. J Hypertens. 41 (Suppl 3)(e161)2023. | |
Wen S, Xu M, Zhang W, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z and Yuan Y: Cadmium induces mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress in neuronal cells. Environ Toxicol. 38:743–753. 2023.PubMed/NCBI View Article : Google Scholar | |
Sung JY, Kim SG, Kang YJ, Park SY and Choi HC: SIRT1-dependent PGC-1α deacetylation by SRT1720 rescues progression of atherosclerosis by enhancing mitochondrial function. Biochim Biophys Acta Mol Cell Biol Lipids. 1869(159453)2024.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Wang Y, Liu S, Sha X, Song X, Dai Y, Zhao M, Cai L, Xu K and Li J: Theranostic nanoplatform to target macrophages enables the inhibition of atherosclerosis progression and fluorescence imaging of plaque in ApoE(-/-) mice. J Nanobiotechnology. 19(222)2021.PubMed/NCBI View Article : Google Scholar | |
Rabelo TK, Zeidán-Chuliá F, Caregnato FF, Schnorr CE, Gasparotto J, Serafini MR, de Souza Araújo AA, Quintans-Junior LJ, Moreira JCF and Gelain DP: In vitro neuroprotective effect of shikimic acid against hydrogen peroxide-induced oxidative stress. J Mol Neurosci. 56:956–965. 2015.PubMed/NCBI View Article : Google Scholar | |
Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC, Jafari SM, Jha NK, et al: Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev. 144(104955)2023.PubMed/NCBI View Article : Google Scholar | |
Korzh OM: The application of quercetin in liposomal form for optimization of metabolic therapy of coronary artery disease. National Academy of Sciences of Ukraine, pp118-123, 2021. | |
Nazari-Khanamiri F and Ghasemnejad-Berenji M: Quercetin and heart health: From molecular pathways to clinical findings. J Food Biochem, 2023. | |
Ge C, Wang S, Wu X and Lei L: Quercetin mitigates depression-like behavior via the suppression of neuroinflammation and oxidative damage in corticosterone-induced mice. J Chem Neuroanat. 132(102313)2023.PubMed/NCBI View Article : Google Scholar |