
Research progress of corneal characteristics and changes in primary angle‑closure glaucoma (Review)
- Authors:
- Yue Wang
- Linwei Yan
- Yuan Qin
- Fang Fan
-
Affiliations: Department of Ophthalmology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China - Published online on: February 5, 2025 https://doi.org/10.3892/br.2025.1937
- Article Number: 59
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Kang JM and Tanna AP: Glaucoma. Med Clin North Am. 105:493–510. 2021.PubMed/NCBI View Article : Google Scholar | |
He M, Jiang Y, Huang S, Chang DS, Munoz B, Aung T, Foster PJ and Friedman DS: Laser peripheral iridotomy for the prevention of angle closure: A single-centre, randomised controlled trial. Lancet. 393:1609–1618. 2019.PubMed/NCBI View Article : Google Scholar | |
George R, Panda S and Vijaya L: Blindness in glaucoma: primary open-angle glaucoma versus primary angle-closure glaucoma-a meta-analysis. Eye (Lond). 36:2099–2105. 2022.PubMed/NCBI View Article : Google Scholar | |
Tuck H, Park M, Carnell M, Machet J, Richardson A, Jukic M and Di Girolamo N: Neuronal-epithelial cell alignment: A determinant of health and disease status of the cornea. Ocul Surf. 21:257–270. 2021.PubMed/NCBI View Article : Google Scholar | |
Li EY, Mohamed S, Leung CK, Rao SK, Cheng AC, Cheung CY and Lam DS: Agreement among 3 methods to measure corneal thickness: Ultrasound pachymetry, Orbscan II, and Visante anterior segment optical coherence tomography. Ophthalmology. 114:1842–1847. 2007.PubMed/NCBI View Article : Google Scholar | |
Heath MT, Mulpuri L, Kimiagarov E, Patel RP, Murphy DA, Levine H, Tonk RS, Cooke DL and Riaz KM: Intraocular lens power calculations in keratoconus eyes comparing keratometry, total keratometry, and newer formulae. Am J Ophthalmol. 253:206–214. 2023.PubMed/NCBI View Article : Google Scholar | |
Sugar A: Clinical specular microscopy. Surv Ophthalmol. 24:21–32. 1979.PubMed/NCBI View Article : Google Scholar | |
Badian RA, Ekman L, Pripp AH, Utheim TP, Englund E, Dahlin LB, Rolandsson O and Lagali N: Comparison of novel wide-field in vivo corneal confocal microscopy with skin biopsy for assessing peripheral neuropathy in type 2 diabetes. Diabetes. 72:908–917. 2023.PubMed/NCBI View Article : Google Scholar | |
Giannaccare G, Bernabei F, Pellegrini M, Guaraldi F, Turchi F, Torrazza C, Senni C, Scotto R, Sindaco D, Di Cello L, et al: Bilateral morphometric analysis of corneal sub-basal nerve plexus in patients undergoing unilateral cataract surgery: A preliminary in vivo confocal microscopy study. Br J Ophthalmol. 105:174–179. 2021.PubMed/NCBI View Article : Google Scholar | |
Ren X, Chou Y, Wang Y, Jing D, Chen Y and Li X: The utility of oral vitamin B1 and mecobalamin to improve corneal nerves in dry eye disease: An in vivo confocal microscopy study. Nutrients. 14(3750)2022.PubMed/NCBI View Article : Google Scholar | |
Misra SL, Slater JA, McGhee CNJ, Pradhan M and Braatvedt GD: Corneal confocal microscopy in type 1 diabetes mellitus: A six-year longitudinal study. Transl Vis Sci Technol. 11(17)2022.PubMed/NCBI View Article : Google Scholar | |
Posarelli M, Chirapapaisan C, Muller R, Abbouda A, Pondelis N, Cruzat A, Cavalcanti BM, Cox SM, Jamali A, Pavan-Langston D and Hamrah P: Corneal nerve regeneration is affected by scar location in herpes simplex keratitis: A longitudinal in vivo confocal microscopy study. Ocul Surf. 28:42–52. 2023.PubMed/NCBI View Article : Google Scholar | |
Wang W, Yang X, Yao Q, Xu Q, Liu W and Liu J: Corneal confocal microscopic characteristics of acute angle-closure crisis. BMC Ophthalmol. 22(21)2022.PubMed/NCBI View Article : Google Scholar | |
Sosuan GMN and Yap-Veloso MIR: Central corneal thickness among filipino patients in an ambulatory eye surgery center using anterior segment optical coherence tomography. Clin Ophthalmol. 15:2653–2664. 2021.PubMed/NCBI View Article : Google Scholar | |
Park HM, Choi J, Lee WJ and Uhm KB: Rate of central corneal thickness changes in primary angle closure eyes: Long-term follow-up results. BMC Ophthalmol. 21(145)2021.PubMed/NCBI View Article : Google Scholar | |
Niu WR, Dong CQ, Zhang X, Feng YF and Yuan F: Ocular biometric characteristics of chinese with history of acute angle closure. J Ophthalmol. 2018(5835791)2018.PubMed/NCBI View Article : Google Scholar | |
Chen MJ, Liu CJ, Cheng CY and Lee SM: Corneal status in primary angle-closure glaucoma with a history of acute attack. J Glaucoma. 21:12–16. 2012.PubMed/NCBI View Article : Google Scholar | |
Sugumaran A, Devasena MA, Thomas M and Periyathambi D: A cross sectional study on evaluating the corneal endothelial cell density and central corneal thickness in eyes with primary glaucoma. J Family Med Prim Care. 11:4650–4654. 2022.PubMed/NCBI View Article : Google Scholar | |
Radhakrishnan S, Chen PP, Junk AK, Nouri-Mahdavi K and Chen TC: Laser peripheral iridotomy in primary angle closure: A report by the American academy of ophthalmology. Ophthalmology. 125:1110–1120. 2018.PubMed/NCBI View Article : Google Scholar | |
Unterlauft JD, Yafai Y and Wiedemann P: Changes of anterior chamber architecture induced by laser peripheral iridotomy in acute angle closure crisis. Int Ophthalmol. 35:549–556. 2015.PubMed/NCBI View Article : Google Scholar | |
Shon K, Sung KR and Yoon JY: Implications of the relationship between refractive error and biometry in the pathogenesis of primary angle closure. Invest Ophthalmol Vis Sci. 62(38)2021.PubMed/NCBI View Article : Google Scholar | |
Wang B, Cao K, Wang Z, Zhang Y, Congdon N and Wang T: Analyzing anatomical factors contributing to angle closure based on anterior segment optical coherence tomography imaging. Curr Eye Res. 47:256–261. 2022.PubMed/NCBI View Article : Google Scholar | |
Zuo C, Gong R, Chen W, Chen C, Su J, Wei K, Gao X, Lin M and Ge J: Investigation of corneal astigmatism in chinese patients with primary angle closure disease. J Glaucoma. 27:1131–1135. 2018.PubMed/NCBI View Article : Google Scholar | |
Goldstein MH, Silva FQ, Blender N, Tran T and Vantipalli S: Ocular benzalkonium chloride exposure: Problems and solutions. Eye (Lond). 36:361–368. 2022.PubMed/NCBI View Article : Google Scholar | |
Hedengran A and Kolko M: The molecular aspect of anti-glaucomatous eye drops - are we harming our patients? Mol Aspects Med. 93(101195)2023.PubMed/NCBI View Article : Google Scholar | |
Thacker M, Sahoo A, Reddy AA, Bokara KK, Singh S, Basu S and Singh V: Benzalkonium chloride-induced dry eye disease animal models: Current understanding and potential for translational research. Indian J Ophthalmol. 71:1256–1262. 2023.PubMed/NCBI View Article : Google Scholar | |
Valladales-Restrepo LF, Oyuela-Gutiérrez MC, Delgado-Araujo AC and Machado-Alba JE: Use pattern of ophthalmic antiglaucoma agents with and without preservatives: A cross-sectional study. Pharmaceuticals (Basel). 16(753)2023.PubMed/NCBI View Article : Google Scholar | |
Güçlü H, Çınar AK, Çınar AC, Akaray İ, Şambel Aykutlu M, Sakallıoğlu AK and Gürlü V: Corneal epithelium and limbal region alterations due to glaucoma medications evaluated by anterior segment optic coherence tomography: A case-control study. Cutan Ocul Toxicol. 40:85–94. 2021.PubMed/NCBI View Article : Google Scholar | |
Mao J, Wang Y, Gao Y, Wan S, Jiang W, Pan Y, Yan Y, Cong Y, Shi X, Huang L and Yang Y: Correlation between anterior chamber angle status and limbal stem cell deficiency in primary angle-closure glaucoma. Am J Ophthalmol. 262:178–185. 2024.PubMed/NCBI View Article : Google Scholar | |
Yu FX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q and Xie L: The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res. 89(101039)2022.PubMed/NCBI View Article : Google Scholar | |
Patel S, Hwang J, Mehra D and Galor A: Corneal nerve abnormalities in ocular and systemic diseases. Exp Eye Res. 202(108284)2021.PubMed/NCBI View Article : Google Scholar | |
Rossi GCM, Scudeller L, Lumini C, Mirabile AV, Picasso E, Bettio F, Pasinetti GM and Bianchi PE: An in vivo confocal, prospective, masked, 36 months study on glaucoma patients medically treated with preservative-free or preserved monotherapy. Sci Rep. 9(4282)2019.PubMed/NCBI View Article : Google Scholar | |
Agnifili L, Brescia L, Villani E, D'Onofrio G, Figus M, Oddone F, Nucci P and Mastropasqua R: In vivo confocal microscopy of the corneal sub-basal nerve plexus in medically controlled glaucoma. Microsc Microanal. 1–8. 2022.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Graae Jensen P, Gundersen M, Nilsen C, Gundersen KG, Potvin R, Gazerani P, Chen X, Utheim TP and Utheim ØA: Prevalence of dry eye disease among individuals scheduled for cataract surgery in a norwegian cataract clinic. Clin Ophthalmol. 17:1233–1243. 2023.PubMed/NCBI View Article : Google Scholar | |
Agnifili L, Brescia L, Oddone F, Sacchi M, D'Ugo E, Di Marzio G, Perna F, Costagliola C and Mastropasqua R: The ocular surface after successful glaucoma filtration surgery: A clinical, in vivo confocal microscopy, and immune-cytology study. Sci Rep. 9(11299)2019.PubMed/NCBI View Article : Google Scholar | |
Sebbag L, Crabtree EE, Sapienza JS, Kim K and Rodriguez E: Corneal hypoesthesia, aqueous tear deficiency, and neurotrophic keratopathy following micropulse transscleral cyclophotocoagulation in dogs. Vet Ophthalmol. 23:171–180. 2020.PubMed/NCBI View Article : Google Scholar | |
Downie LE, Zhang X, Wu M, Karunaratne S, Loi JK, Senthil K, Arshad S, Bertram K, Cunningham AL, Carnt N, et al: Redefining the human corneal immune compartment using dynamic intravital imaging. Proc Natl Acad Sci USA. 120(e2217795120)2023.PubMed/NCBI View Article : Google Scholar | |
Chen Q, Wang L, Zhang Y, Xu X, Wei Z, Zhang Z, Wei Y, Pang J, Guo X, Cao K and Liang Q: Corneal epithelial dendritic cells: An objective indicator for ocular surface inflammation in patients with obstructive meibomian gland dysfunction? Ocul Immunol Inflamm. 32:79–88. 2024.PubMed/NCBI View Article : Google Scholar | |
He W, Xu F, Chen L, Huang W, Jiang L, Tang F, Yan W, Zhong S, Shen C, Huang H, et al: Association of high-mobility group box-1 with inflammationrelated cytokines in the aqueous humor with acute primary angle-closure eyes. Curr Mol Med. 21:237–245. 2021.PubMed/NCBI View Article : Google Scholar | |
Mastropasqua R, Agnifili L, Fasanella V, Lappa A, Brescia L, Lanzini M, Oddone F, Perri P and Mastropasqua L: In vivo distribution of corneal epithelial dendritic cells in patients with glaucoma. Invest Ophthalmol Vis Sci. 57:5996–6002. 2016.PubMed/NCBI View Article : Google Scholar | |
Espana EM and Birk DE: Composition, structure and function of the corneal stroma. Exp Eye Res. 198(108137)2020.PubMed/NCBI View Article : Google Scholar | |
Chen D, Wang L, Guo X, Zhang Z, Xu X, Jin ZB and Liang Q: Evaluation of limbal stem cells in patients with type 2 diabetes: An in vivo confocal microscopy study. Cornea. 43:67–75. 2024.PubMed/NCBI View Article : Google Scholar | |
Cagini C, Di Lascio G, Torroni G, Mariniello M, Meschini G, Lupidi M and Messina M: Dry eye and inflammation of the ocular surface after cataract surgery: Effectiveness of a tear film substitute based on trehalose/hyaluronic acid vs hyaluronic acid to resolve signs and symptoms. J Cataract Refract Surg. 47:1430–1435. 2021.PubMed/NCBI View Article : Google Scholar | |
Yuan XL, Wen Q, Zhang MY and Fan TJ: Cytotoxicity of pilocarpine to human corneal stromal cells and its underlying cytotoxic mechanisms. Int J Ophthalmol. 9:505–511. 2016.PubMed/NCBI View Article : Google Scholar | |
Vallabh NA, Kennedy S, Vinciguerra R, McLean K, Levis H, Borroni D, Romano V and Willoughby CE: Corneal endothelial cell loss in glaucoma and glaucoma surgery and the utility of management with descemet membrane endothelial keratoplasty (DMEK). J Ophthalmol. 2022(1315299)2022.PubMed/NCBI View Article : Google Scholar | |
Wenzel DA, Schultheiss C, Druchkiv V, Hellwinkel OJC, Spitzer MS, Schultheiss M, Casagrande M and Steinhorst NA: Effect of elevated irrigation bottle height during cataract surgery on corneal endothelial cells in porcine eyes. BMC Ophthalmol. 23(211)2023.PubMed/NCBI View Article : Google Scholar | |
Li X, Zhang Z, Ye L, Meng J, Zhao Z, Liu Z and Hu J: Acute ocular hypertension disrupts barrier integrity and pump function in rat corneal endothelial cells. Sci Rep. 7(6951)2017.PubMed/NCBI View Article : Google Scholar | |
Li Z, Fan N, Cheng Y, Xiang F, Pan X, Cao K, Zhang Y, Zhang Q and Li S: Factors associated with severe corneal endothelial damage following acute primary angle closure in Chinese subjects. Graefes Arch Clin Exp Ophthalmol. 261:2927–2934. 2023.PubMed/NCBI View Article : Google Scholar | |
Tham CC, Kwong YY, Lai JS and Lam DS: Effect of a previous acute angle closure attack on the corneal endothelial cell density in chronic angle closure glaucoma patients. J Glaucoma. 15:482–485. 2006.PubMed/NCBI View Article : Google Scholar | |
Yeom H, Hong EH, Shin YU, Kang MH, Cho HY and Seong M: Corneal endothelial cell loss after phacoemulsification in eyes with a prior acute angle-closure attack. Korean J Ophthalmol. 34:432–438. 2020.PubMed/NCBI View Article : Google Scholar | |
Verma S, Nongpiur ME, Husain R, Wong TT, Boey PY, Quek D, Perera SA and Aung T: Characteristics of the corneal endothelium across the primary angle closure disease spectrum. Invest Ophthalmol Vis Sci. 59:4525–4530. 2018.PubMed/NCBI View Article : Google Scholar | |
Imai K, Sawada H, Hatase T and Fukuchi T: Iridocorneal contact as a potential cause of corneal decompensation following laser peripheral iridotomy. Jpn J Ophthalmol. 65:460–471. 2021.PubMed/NCBI View Article : Google Scholar | |
Yuan Y, Wang W, Xiong R, Zhang J, Li C, Yang S, Friedman DS, Foster PJ and He M: Fourteen-year outcome of angle-closure prevention with laser iridotomy in the zhongshan angle-closure prevention study: Extended follow-up of a randomized controlled trial. Ophthalmology. 130:786–794. 2023.PubMed/NCBI View Article : Google Scholar | |
Chen HC, Lee CY, Liu CF, Hsueh YJ, Meir YJ, Cheng CM and Wu WC: Corneal endothelial changes following early capsulotomy using neodymium:yttrium-aluminum-garnet laser. Diagnostics (Basel). 12(150)2022.PubMed/NCBI View Article : Google Scholar | |
Higashihara H, Sotozono C, Yokoi N, Inatomi T and Kinoshita S: The blood-aqueous barrier breakdown in eyes with endothelial decompensation after argon laser iridotomy. Br J Ophthalmol. 95:1032–1034. 2011.PubMed/NCBI View Article : Google Scholar | |
Liao C, Zhang J, Jiang Y, Huang S, Aung T, Foster PJ, Friedman D and He M: Long-term effect of YAG laser iridotomy on corneal endothelium in primary angle closure suspects: A 72-month randomised controlled study. Br J Ophthalmol. 105:348–353. 2021.PubMed/NCBI View Article : Google Scholar | |
Ono T, Iida M, Sakisaka T, Minami K and Miyata K: Effect of laser peripheral iridotomy using argon and neodymium-YAG lasers on corneal endothelial cell density: 7-year longitudinal evaluation. Jpn J Ophthalmol. 62:216–220. 2018.PubMed/NCBI View Article : Google Scholar |