
The roles and functions of TMEM protein family members in cancers, cardiovascular and kidney diseases (Review)
- Authors:
- Haosen Xu
- Shanzhi Yang
- Peimin Liu
- Yan Zhang
- Ting Zhang
- Jinyi Lan
- Huan Jiang
- Danfeng Wu
- Jiaoqing Li
- Xiaoyan Bai
-
Affiliations: First Clinical College of Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China, Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China - Published online on: February 11, 2025 https://doi.org/10.3892/br.2025.1941
- Article Number: 63
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ryu H, Fuwad A, Yoon S, Jang H, Lee JC, Kim SM and Jeon TJ: Biomimetic membranes with transmembrane proteins: State-of-the-art in transmembrane protein applications. Int J Mol Sci. 20(1437)2019.PubMed/NCBI View Article : Google Scholar | |
Stillwell W: Chapter 6-membrane proteins. In: An introduction to biological membranes (second edition). Stillwell W (ed). Elsevier, pp89-110, 2016. | |
Marx S, Dal Maso T, Chen JW, Bury M, Wouters J, Michiels C and Le Calvé B: Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol. 60:96–106. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu D, Qu L, Hu J, Li G, Lv P, Ma D, Guo M and Chen Y: Transmembrane protein 106A is silenced by promoter region hypermethylation and suppresses gastric cancer growth by inducing apoptosis. J Cell Mol Med. 18:1655–1666. 2014.PubMed/NCBI View Article : Google Scholar | |
Segelcke D, Fischer HK, Hütte M, Dennerlein S, Benseler F, Brose N, Pogatzki-Zahn EM and Schmidt M: Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice. Cell Rep. 37(110152)2021.PubMed/NCBI View Article : Google Scholar | |
Wrzesiński T, Szelag M, Cieślikowski WA, Ida A, Giles R, Zodro E, Szumska J, Poźniak J, Kwias Z, Bluyssen HA and Wesoly J: Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer. 15(518)2015.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Luo S, Barbosa GO, Bai M, Kornberg TB and Ma DK: The conserved transmembrane protein TMEM-39 coordinates with COPII to promote collagen secretion and regulate ER stress response. PLoS Genet. 17(e1009317)2021.PubMed/NCBI View Article : Google Scholar | |
Foulquier F, Amyere M, Jaeken J, Zeevaert R, Schollen E, Race V, Bammens R, Morelle W, Rosnoblet C, Legrand D, et al: TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet. 91:15–26. 2012.PubMed/NCBI View Article : Google Scholar | |
Jung YS, Jun S, Kim MJ, Lee SH, Suh HN, Lien EM, Jung HY, Lee S, Zhang J, Yang JI, et al: TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/β-catenin signalling. Nat Cell Biol. 20:1421–1433. 2018.PubMed/NCBI View Article : Google Scholar | |
Tropea TF, Mak J, Guo MH, Xie SX, Suh E, Rick J, Siderowf A, Weintraub D, Grossman M, Irwin D, et al: TMEM106B effect on cognition in Parkinson disease and frontotemporal dementia. Ann Neurol. 85:801–811. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang P, Zhao W, Sun J, Tao T, Chen X, Zheng YY, Zhang CH, Chen Z, Gao YQ, She F, et al: Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor-transmembrane protein 16A-voltage-dependent Ca2+ channel axis and contribute to bronchial hyperresponsiveness in asthma. J Allergy Clin Immunol. 141:1259–1268.e11. 2018.PubMed/NCBI View Article : Google Scholar | |
van der Mark VA, Ghiboub M, Marsman C, Zhao J, van Dijk R, Hiralall JK, Ho-Mok KS, Castricum Z, de Jonge WJ, Oude Elferink RP and Paulusma CC: Phospholipid flippases attenuate LPS-induced TLR4 signaling by mediating endocytic retrieval of Toll-like receptor 4. Cell Mol Life Sci. 74:715–730. 2017.PubMed/NCBI View Article : Google Scholar | |
Lemmon MA and Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell. 141:1117–1134. 2010.PubMed/NCBI View Article : Google Scholar | |
Yang J, Chen J, Del Carmen Vitery M, Osei-Owusu J, Chu J, Yu H, Sun S and Qiu Z: PAC, an evolutionarily conserved membrane protein, is a proton-activated chloride channel. Science. 364:395–399. 2019.PubMed/NCBI View Article : Google Scholar | |
Fu Q, Wu X, Lu Z, Chang Y, Jin Q, Jin T and Zhang M: TMEM205 induces TAM/M2 polarization to promote cisplatin resistance in gastric cancer. Gastric Cancer. 27:998–1015. 2024.PubMed/NCBI View Article : Google Scholar | |
Guo Q, Shen S, Liao M, Lian P and Wang X: NGX6 inhibits cell invasion and adhesion through suppression of Wnt/beta-catenin signal pathway in colon cancer. Acta Biochim Biophys Sin (Shanghai). 42:450–456. 2010.PubMed/NCBI View Article : Google Scholar | |
Chen J, Wang D, Chen H, Gu J, Jiang X, Han F, Cao J, Liu W and Liu J: TMEM196 inhibits lung cancer metastasis by regulating the Wnt/β-catenin signaling pathway. J Cancer Res Clin Oncol. 149:653–667. 2023.PubMed/NCBI View Article : Google Scholar | |
Ng KT, Lo CM, Guo DY, Qi X, Li CX, Geng W, Liu XB, Ling CC, Ma YY, Yeung WH, et al: Identification of transmembrane protein 98 as a novel chemoresistance-conferring gene in hepatocellular carcinoma. Mol Cancer Ther. 13:1285–1297. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang X, He Y, Jiang Y, Bao Y, Chen Q, Xie D, Yu H and Wang X: TMEM229A suppresses non-small cell lung cancer progression via inactivating the ERK pathway. Oncol Rep. 46(176)2021.PubMed/NCBI View Article : Google Scholar | |
Jun I, Park HS, Piao H, Han JW, An MJ, Yun BG, Zhang X, Cha YH, Shin YK, Yook JI, et al: ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. Br J Cancer. 117:1798–1809. 2017.PubMed/NCBI View Article : Google Scholar | |
Sui Y, Sun M, Wu F, Yang L, Di W, Zhang G, Zhong L, Ma Z, Zheng J, Fang X and Ma T: Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells. PLoS One. 9(e115443)2014.PubMed/NCBI View Article : Google Scholar | |
Deng L, Yang J, Chen H, Ma B, Pan K, Su C, Xu F and Zhang J: Knockdown of TMEM16A suppressed MAPK and inhibited cell proliferation and migration in hepatocellular carcinoma. Onco Targets Ther. 9:325–333. 2016.PubMed/NCBI View Article : Google Scholar | |
Bill A, Gutierrez A, Kulkarni S, Kemp C, Bonenfant D, Voshol H, Duvvuri U and Gaither LA: ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget. 6:9173–9188. 2015.PubMed/NCBI View Article : Google Scholar | |
Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K, et al: TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res. 72:3270–3281. 2012.PubMed/NCBI View Article : Google Scholar | |
Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S, Rebhan M, Raman P, Guy CT, Wetzel K, et al: Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA. 110:E1026–E1034. 2013.PubMed/NCBI View Article : Google Scholar | |
Liu F, Cao QH, Lu DJ, Luo B, Lu XF, Luo RC and Wang XG: TMEM16A overexpression contributes to tumor invasion and poor prognosis of human gastric cancer through TGF-β signaling. Oncotarget. 6:11585–11599. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu J, Liu Y, Ren Y, Kang L and Zhang L: Transmembrane protein with unknown function 16A overexpression promotes glioma formation through the nuclear factor-κB signaling pathway. Mol Med Rep. 9:1068–1074. 2014.PubMed/NCBI View Article : Google Scholar | |
Jia L, Liu W, Guan L, Lu M and Wang K: Inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. PLoS One. 10(e0136584)2015.PubMed/NCBI View Article : Google Scholar | |
Mazzone A, Eisenman ST, Strege PR, Yao Z, Ordog T, Gibbons SJ and Farrugia G: Inhibition of cell proliferation by a selective inhibitor of the Ca(2+)-activated Cl(-) channel, Ano1. Biochem Biophys Res Commun. 427:248–253. 2012.PubMed/NCBI View Article : Google Scholar | |
Cha JY, Wee J, Jung J, Jang Y, Lee B, Hong GS, Chang BC, Choi YL, Shin YK, Min HY, et al: Anoctamin 1 (TMEM16A) is essential for testosterone-induced prostate hyperplasia. Proc Natl Acad Sci USA. 112:9722–9727. 2015.PubMed/NCBI View Article : Google Scholar | |
Shang L, Hao JJ, Zhao XK, He JZ, Shi ZZ, Liu HJ, Wu LF, Jiang YY, Shi F, Yang H, et al: ANO1 protein as a potential biomarker for esophageal cancer prognosis and precancerous lesion development prediction. Oncotarget. 7:24374–24382. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Song K, Zhang Y, Xu H, Zhang X, Wang L, Fan C, Jiang G and Wang E: TMEM17 promotes malignant progression of breast cancer via AKT/GSK3β signaling. Cancer Manag Res. 10:2419–2428. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang S, Zhou Q, Yan S, Liu C, Li F, Feng D and He M: TMEM17 promotes tumor progression in glioblastoma by activating the PI3K/AKT pathway. Front Biosci (Landmark Ed). 29(285)2024.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Zhang Y, Miao Y, Zhou H, Jiang G and Wang E: TMEM17 depresses invasion and metastasis in lung cancer cells via ERK signaling pathway. Oncotarget. 8:70685–70694. 2017.PubMed/NCBI View Article : Google Scholar | |
Flamant L, Roegiers E, Pierre M, Hayez A, Sterpin C, De Backer O, Arnould T, Poumay Y and Michiels C: TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer. 12(391)2012.PubMed/NCBI View Article : Google Scholar | |
Guo J, Chen L, Luo N, Yang W, Qu X and Cheng Z: Inhibition of TMEM45A suppresses proliferation, induces cell cycle arrest and reduces cell invasion in human ovarian cancer cells. Oncol Rep. 33:3124–3130. 2015.PubMed/NCBI View Article : Google Scholar | |
Shen K, Yu W, Yu Y, Liu X and Cui X: Knockdown of TMEM45B inhibits cell proliferation and invasion in gastric cancer. Biomed Pharmacother. 104:576–581. 2018.PubMed/NCBI View Article : Google Scholar | |
Li Y, Guo W, Liu S, Zhang B, Yu BB, Yang B, Kan SL and Feng SQ: Silencing transmembrane protein 45B (TNEM45B) inhibits proliferation, invasion, and tumorigenesis in osteosarcoma cells. Oncol Res. 25:1021–1026. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Yu X, Jiang G, Miao Y, Wang L, Zhang Y, Liu Y, Fan C, Lin X, Dong Q, et al: Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS. Cancer Res. 75:4527–4537. 2015.PubMed/NCBI View Article : Google Scholar | |
Yu X, Zhang X, Zhang Y, Jiang G, Mao X and Jin F: Cytosolic TMEM88 promotes triple-negative breast cancer by interacting with Dvl. Oncotarget. 6:25034–25045. 2015.PubMed/NCBI View Article : Google Scholar | |
de Leon M, Cardenas H, Vieth E, Emerson R, Segar M, Liu Y, Nephew K and Matei D: Transmembrane protein 88 (TMEM88) promoter hypomethylation is associated with platinum resistance in ovarian cancer. Gynecol Oncol. 142:539–547. 2016.PubMed/NCBI View Article : Google Scholar | |
Cheng Z, Guo J, Chen L, Luo N, Yang W and Qu X: Overexpression of TMEM158 contributes to ovarian carcinogenesis. J Exp Clin Cancer Res. 34(75)2015.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Yao N, Ding D, Zhang X, Liu H, Ma L, Shi W, Zhu C and Tang L: TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway. J Cell Physiol. 235:2761–2775. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu XY, Zhang LJ, Yu YQ, Zhang XT, Huang WJ, Nie XC and Song GQ: Down-regulated MAC30 expression inhibits proliferation and mobility of human gastric cancer cells. Cell Physiol Biochem. 33:1359–1368. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhu H, Su Z, Ning J, Zhou L, Tan L, Sayed S, Song J, Wang Z, Li H, Sun Q, et al: Transmembrane protein 97 exhibits oncogenic properties via enhancing LRP6-mediated Wnt signaling in breast cancer. Cell Death Dis. 12(912)2021.PubMed/NCBI View Article : Google Scholar | |
Mao D, Zhang X, Wang Z, Xu G and Zhang Y: TMEM97 is transcriptionally activated by YY1 and promotes colorectal cancer progression via the GSK-3β/β-catenin signaling pathway. Hum Cell. 35:1535–1546. 2022.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Tang Y, Xu Q and He W: TMEM97 knockdown inhibits 5-fluorouracil resistance by regulating epithelial-mesenchymal transition and ABC transporter expression via inactivating the Akt/mTOR pathway in 5-fluorouracil-resistant colorectal cancer cells. Chem Biol Drug Des. 103(e14490)2024.PubMed/NCBI View Article : Google Scholar | |
Liu WB, Han F, Huang YS, Chen HQ, Chen JP, Wang DD, Jiang X, Yin L, Cao J and Liu JY: TMEM196 hypermethylation as a novel diagnostic and prognostic biomarker for lung cancer. Mol Carcinog. 58:474–487. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu WB, Han F, Jiang X, Chen HQ, Zhao H, Liu Y, Li YH, Huang C, Cao J and Liu JY: TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer. Oncotarget. 6:21225–21239. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu D, Wang K, Su D, Huang Y, Shang L, Zhao Y, Huang J and Pang Y: TMEM16A regulates pulmonary arterial smooth muscle cells proliferation via p38MAPK/ERK pathway in high pulmonary blood flow-induced pulmonary arterial hypertension. J Vasc Res. 58:27–37. 2020.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Shang L, Wang K, Liu D, Qin S, Huang J, Zhao Y and Pang Y: TMEM16A regulates the cell cycle of pulmonary artery smooth muscle cells in high-flow-induced pulmonary arterial hypertension rat model. Exp Ther Med. 19:3275–3281. 2020.PubMed/NCBI View Article : Google Scholar | |
Zheng H, Li X, Zeng X, Huang C, Ma M, Lv X, Zhang Y, Sun L, Wang G, Du Y and Guan Y: TMEM16A inhibits angiotensin II-induced basilar artery smooth muscle cell migration in a WNK1-dependent manner. Acta Pharm Sin B. 11:3994–4007. 2021.PubMed/NCBI View Article : Google Scholar | |
Lv XF, Zhang YJ, Liu X, Zheng HQ, Liu CZ, Zeng XL, Li XY, Lin XC, Lin CX, Ma MM, et al: TMEM16A ameliorates vascular remodeling by suppressing autophagy via inhibiting Bcl-2-p62 complex formation. Theranostics. 10:3980–3993. 2020.PubMed/NCBI View Article : Google Scholar | |
Ma MM, Gao M, Guo KM, Wang M, Li XY, Zeng XL, Sun L, Lv XF, Du YH, Wang GL, et al: TMEM16A contributes to endothelial dysfunction by facilitating Nox2 NADPH oxidase-derived reactive oxygen species generation in hypertension. Hypertension. 69:892–901. 2017.PubMed/NCBI View Article : Google Scholar | |
Cil O, Chen X, Askew Page HR, Baldwin SN, Jordan MC, Myat Thwe P, Anderson MO, Haggie PM, Greenwood IA, Roos KP and Verkman AS: A small molecule inhibitor of the chloride channel TMEM16A blocks vascular smooth muscle contraction and lowers blood pressure in spontaneously hypertensive rats. Kidney Int. 100:311–320. 2021.PubMed/NCBI View Article : Google Scholar | |
Li Y, Cho H, Wang F, Canela-Xandri O, Luo C, Rawlik K, Archacki S, Xu C, Tenesa A, Chen Q and Wang QK: Statistical and functional studies identify epistasis of cardiovascular risk genomic variants from genome-wide association studies. J Am Heart Assoc. 9(e014146)2020.PubMed/NCBI View Article : Google Scholar | |
Li M, Zhu H, Hu X, Gao F, Hu X, Cui Y, Wei X, Xie C, Lv G, Zhao Y and Gao Y: TMEM98, a novel secretory protein, promotes endothelial cell adhesion as well as vascular smooth muscle cell proliferation and migration. Can J Physiol Pharmacol. 99:536–548. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen XZ, Li XM, Xu SJ, Hu S, Wang T, Li RF, Liu CY, Xue JQ, Zhou LY, Wang YH, et al: TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m7G methylation of ATF5 mRNA. Cell Death Differ. 30:1786–1798. 2023.PubMed/NCBI View Article : Google Scholar | |
Ding J, Matsumiya T, Miki Y, Hayakari R, Shiba Y, Kawaguchi S, Seya K and Imaizumi T: ER export signals mediate plasma membrane localization of transmembrane protein TMEM72. FEBS J. 290:2636–2657. 2023.PubMed/NCBI View Article : Google Scholar | |
Dobashi S, Katagiri T, Hirota E, Ashida S, Daigo Y, Shuin T, Fujioka T, Miki T and Nakamura Y: Involvement of TMEM22 overexpression in the growth of renal cell carcinoma cells. Oncol Rep. 21:305–312. 2009.PubMed/NCBI | |
Thibodeau BJ, Fulton M, Fortier LE, Geddes TJ, Pruetz BL, Ahmed S, Banes-Berceli A, Zhang PL, Wilson GD and Hafron J: Characterization of clear cell renal cell carcinoma by gene expression profiling. Urol Oncol. 34:168.e1–e9. 2016.PubMed/NCBI View Article : Google Scholar | |
Jiang H, Chen H, Wan P, Liang M and Chen N: Upregulation of TMEM45A promoted the progression of clear cell renal cell carcinoma in vitro. J Inflamm Res. 14:6421–6430. 2021.PubMed/NCBI View Article : Google Scholar | |
Schmit K, Chen JW, Ayama-Canden S, Fransolet M, Finet L, Demazy C, D'Hondt L, Graux C and Michiels C: Characterization of the role of TMEM45A in cancer cell sensitivity to cisplatin. Cell Death Dis. 10(919)2019.PubMed/NCBI View Article : Google Scholar | |
Wang P, Sun B, Hao D, Zhang X, Shi T and Ma D: Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation. Biochem Biophys Res Commun. 394:993–999. 2010.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Hu F, Meng L, Gou L and Luo M: Analysis of TMEM174 gene expression in various renal cancer types by RNA in situ hybridization. Oncol Lett. 8:1693–1696. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu C, Xu J, Wang H, Zhang J, Zhong J, Zou X, Chen Y, Yang G, Zhong Y, Lai D, et al: TMEM106a is a novel tumor suppressor in human renal cancer. Kidney Blood Press Res. 42:853–864. 2017.PubMed/NCBI View Article : Google Scholar | |
Dawe HR, Smith UM, Cullinane AR, Gerrelli D, Cox P, Badano JL, Blair-Reid S, Sriram N, Katsanis N, Attie-Bitach T, et al: The meckel-gruber syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum Mol Genet. 16:173–186. 2007.PubMed/NCBI View Article : Google Scholar | |
McConnachie DJ, Stow JL and Mallett AJ: Ciliopathies and the kidney: A review. Am J Kidney Dis. 77:410–419. 2021.PubMed/NCBI View Article : Google Scholar | |
Yoder BK, Hou X and Guay-Woodford LM: The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 13:2508–2516. 2002.PubMed/NCBI View Article : Google Scholar | |
Otto EA, Tory K, Attanasio M, Zhou W, Chaki M, Paruchuri Y, Wise EL, Wolf MT, Utsch B, Becker C, et al: Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J Med Genet. 46:663–670. 2009.PubMed/NCBI View Article : Google Scholar | |
Hu HY, Zhang J, Qiu W, Liang C, Li CX, Wei TY, Feng ZK, Guo Q, Yang K and Liu ZG: Comprehensive strategy improves the genetic diagnosis of different polycystic kidney diseases. J Cell Mol Med. 25:6318–6332. 2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Du E, Li H, Jin S, Hu X, Qiu M and Han R: Evidence that TMEM67 causes polycystic kidney disease through activation of JNK/ERK-dependent pathways. Cell Biol Int. 37:694–702. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhu P, Qiu Q, Harris PC, Xu X and Lin X: mtor haploinsufficiency ameliorates renal cysts and cilia abnormality in adult zebrafish tmem67 mutants. J Am Soc Nephrol. 32:822–836. 2021.PubMed/NCBI View Article : Google Scholar | |
Lambacher NJ, Bruel AL, van Dam TJP, Szymańska K, Slaats GG, Kuhns S, McManus GJ, Kennedy JE, Gaff K, Wu KM, et al: TMEM107 recruits ciliopathy proteins to subdomains of the ciliary transition zone and causes Joubert syndrome. Nat Cell Biol. 18:122–131. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Yan X, Liu Y, Zhang P and Ni X: Co-expression of mouse TMEM63A, TMEM63B and TMEM63C confers hyperosmolarity activated ion currents in HEK293 cells. Cell Biochem Funct. 34:238–241. 2016.PubMed/NCBI View Article : Google Scholar | |
Schulz A, Müller NV, van de Lest NA, Eisenreich A, Schmidbauer M, Barysenka A, Purfürst B, Sporbert A, Lorenzen T, Meyer AM, et al: Analysis of the genomic architecture of a complex trait locus in hypertensive rat models links Tmem63c to kidney damage. Elife. 8(e42068)2019.PubMed/NCBI View Article : Google Scholar | |
Orphal M, Gillespie A, Böhme K, Subrova J, Eisenreich A and Kreutz R: TMEM63C, a potential novel target for albuminuria development, is regulated by MicroRNA-564 and transforming growth factor beta in human renal cells. Kidney Blood Press Res. 45:850–862. 2020.PubMed/NCBI View Article : Google Scholar | |
Eisenreich A, Orphal M, Böhme K and Kreutz R: Tmem63c is a potential pro-survival factor in angiotensin II-treated human podocytes. Life Sci. 258(118175)2020.PubMed/NCBI View Article : Google Scholar | |
Faria D, Rock JR, Romao AM, Schweda F, Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstädt H, Herrmann E, et al: The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney Int. 85:1369–1381. 2014.PubMed/NCBI View Article : Google Scholar | |
Miyazaki-Anzai S, Keenan AL, Blaine J and Miyazaki M: Targeted disruption of a proximal tubule-specific TMEM174 gene in mice causes hyperphosphatemia and vascular calcification. J Am Soc Nephrol. 33:1477–1486. 2022.PubMed/NCBI View Article : Google Scholar | |
Liu W, Peng L, Tian W, Li Y, Zhang P, Sun K, Yang Y, Li X, Li G and Zhu X: Loss of phosphatidylserine flippase β-subunit Tmem30a in podocytes leads to albuminuria and glomerulosclerosis. Dis Model Mech. 14(dmm048777)2021.PubMed/NCBI View Article : Google Scholar | |
Lee JY, Harney DJ, Teo JD, Kwok JB, Sutherland GT, Larance M and Don AS: The major TMEM106B dementia risk allele affects TMEM106B protein levels, fibril formation, and myelin lipid homeostasis in the ageing human hippocampus. Mol Neurodegener. 18(63)2023.PubMed/NCBI View Article : Google Scholar | |
Hu Y, Sun JY, Zhang Y, Zhang H, Gao S, Wang T, Han Z, Wang L, Sun BL and Liu G: rs1990622 variant associates with Alzheimer's disease and regulates TMEM106B expression in human brain tissues. BMC Med. 19(11)2021.PubMed/NCBI View Article : Google Scholar | |
Li Z, Farias FHG, Dube U, Del-Aguila JL, Mihindukulasuriya KA, Fernandez MV, Ibanez L, Budde JP, Wang F, Lake AM, et al: The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathol. 139:45–61. 2020.PubMed/NCBI View Article : Google Scholar | |
Perneel J, Neumann M, Heeman B, Cheung S, Van den Broeck M, Wynants S, Baker M, Vicente CT, Faura J, Rademakers R and Mackenzie IRA: Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging. Acta Neuropathol. 145:285–302. 2023.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Zhang K, Pan H, Wang Y, Zhou X, Xiang Y, Xu Q, Sun Q, Tan J, Yan X, et al: Genetic analysis of six transmembrane protein family genes in Parkinson's disease in a large chinese cohort. Front Aging Neurosci. 14(889057)2022.PubMed/NCBI View Article : Google Scholar | |
Cai X, Huang W, Liu X, Wang L and Jiang Y: Association of novel polymorphisms in TMEM39A gene with systemic lupus erythematosus in a Chinese Han population. BMC Med Genet. 18(43)2017.PubMed/NCBI View Article : Google Scholar | |
Lessard CJ, Adrianto I, Ice JA, Wiley GB, Kelly JA, Glenn SB, Adler AJ, Li H, Rasmussen A, Williams AH, et al: Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am J Hum Genet. 90:648–660. 2012.PubMed/NCBI View Article : Google Scholar | |
Tian J, Sun L, Wan L, Zou H, Chen J and Liu F: TMEM44 as a novel prognostic marker for kidney renal clear cell carcinoma is associated with tumor invasion, migration and immune infiltration. Biochem Genet. 62:1200–1215. 2024.PubMed/NCBI View Article : Google Scholar | |
Zhang TM, Liao L, Yang SY, Huang MY, Zhang YL, Deng L, Hu SY, Yang F, Zhang FL, Shao ZM and Li DQ: TOLLIP-mediated autophagic degradation pathway links the VCP-TMEM63A-DERL1 signaling axis to triple-negative breast cancer progression. Autophagy. 19:805–821. 2023.PubMed/NCBI View Article : Google Scholar | |
Li K, Guo Y, Wang Y, Zhu R, Chen W, Cheng T, Zhang X, Jia Y, Liu T, Zhang W, et al: Drosophila TMEM63 and mouse TMEM63A are lysosomal mechanosensory ion channels. Nat Cell Biol. 26:393–403. 2024.PubMed/NCBI View Article : Google Scholar | |
Duan J, Qian Y, Fu X, Chen M, Liu K, Liu H, Yang J, Liu C and Chang Y: TMEM106C contributes to the malignant characteristics and poor prognosis of hepatocellular carcinoma. Aging (Albany NY). 13:5585–5606. 2021.PubMed/NCBI View Article : Google Scholar |