
Pharmacological strategies for targeting biofilms in otorhinolaryngologic infections and overcoming antimicrobial resistance (Review)
- Authors:
- Maulana A. Empitu
- Ika N. Kadariswantiningsih
- Nadhirah Mohd Shakri
-
Affiliations: Division of Pharmacology, Faculty of Medicine, Airlangga University, Surabaya, East Java 60131, Indonesia, Department of Medical Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia, Department of Otorhinolaryngology‑Head and Neck Surgery, Faculty of Medicine, National University of Malaysia, Kuala Lumpur 50300, Malaysia - Published online on: April 9, 2025 https://doi.org/10.3892/br.2025.1973
- Article Number: 95
-
Copyright: © Empitu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Drenkard E and Ausubel FM: Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 416:740–743. 2002.PubMed/NCBI View Article : Google Scholar | |
Behzadi P, Gajdács M, Pallós P, Ónodi B, Stájer A, Matusovits D, Kárpáti K, Burián K, Battah B, Ferrari M, et al: Relationship between biofilm-formation, phenotypic virulence factors and antibiotic resistance in environmental Pseudomonas aeruginosa. Pathogens. 11(1015)2022.PubMed/NCBI View Article : Google Scholar | |
Chen C, Liao X, Jiang H, Zhu H, Yue L, Li S, Fang B and Liu Y: Characteristics of Escherichia coli biofilm production, genetic typing, drug resistance pattern and gene expression under aminoglycoside pressures. Environ Toxicol Pharmacol. 30:5–10. 2010.PubMed/NCBI View Article : Google Scholar | |
Sanderson AR, Leid JG and Hunsaker D: Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope. 116:1121–1126. 2006.PubMed/NCBI View Article : Google Scholar | |
Mohammed RQ and Abdullah PB: Infection with acute otitis media caused by Pseudomonas aeruginosa (MDR) and Staphylococcus aureus (MRSA). Biochem Cell Arch. 20:905–908. 2020. | |
Bendouah Z, Barbeau J, Hamad WA and Desrosiers M: Biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa is associated with an unfavorable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngol Head Neck Surg. 134:991–996. 2006.PubMed/NCBI View Article : Google Scholar | |
Carradori S, Di Giacomo N, Lobefalo M, Luisi G, Campestre C and Sisto F: Biofilm and quorum sensing inhibitors: The road so far. Expert Opin Ther Pat. 30:917–930. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Bian Z and Wang Y: Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biotechnol. 106:6365–6381. 2022.PubMed/NCBI View Article : Google Scholar | |
Zhou L, Zhang Y, Ge Y, Zhu X and Pan J: Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front Microbiol. 11(589640)2020.PubMed/NCBI View Article : Google Scholar | |
Ridyard KE and Overhage J: The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics (Basel). 10(650)2021.PubMed/NCBI View Article : Google Scholar | |
Martínez M, Polizzotto A, Flores N, Semorile L and Maffía PC: Antibacterial, anti-biofilm and in vivo activities of the antimicrobial peptides P5 and P6.2. Microb Pathog. 139(103886)2020.PubMed/NCBI View Article : Google Scholar | |
Paes Leme RC and da Silva RB: Antimicrobial activity of non-steroidal anti-inflammatory drugs on biofilm: Current evidence and potential for drug repurposing. Front Microbiol. 12(707629)2021.PubMed/NCBI View Article : Google Scholar | |
Schelz Z, Muddather HF and Zupkó I: Repositioning of HMG-CoA reductase inhibitors as adjuvants in the modulation of efflux pump-mediated bacterial and tumor resistance. Antibiotics (Basel). 12(1468)2023.PubMed/NCBI View Article : Google Scholar | |
Kumar A, Alam A, Grover S, Pandey S, Tripathi D, Kumari M, Rani M, Singh A, Akhter Y, Ehtesham NZ and Hasnain SE: Peptidyl-prolyl isomerase-B is involved in Mycobacterium tuberculosis biofilm formation and a generic target for drug repurposing-based intervention. NPJ Biofilms Microbiomes. 5(3)2019.PubMed/NCBI View Article : Google Scholar | |
Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS and Bjarnsholt T: The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 20:608–620. 2022.PubMed/NCBI View Article : Google Scholar | |
Irie Y, Borlee BR, O'Connor JR, Hill PJ, Harwood CS, Wozniak DJ and Parsek MR: Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 109:20632–20636. 2012.PubMed/NCBI View Article : Google Scholar | |
Parastan R, Kargar M, Solhjoo K and Kafilzadeh F: Staphylococcus aureus biofilms: Structures, antibiotic resistance, inhibition, and vaccines. Gene Rep. 20(100739)2020. | |
Galli J, Calò L, Ardito F, Imperiali M, Bassotti E, Fadda G and Paludetti G: Biofilm formation by Haemophilus influenzae isolated from adeno-tonsil tissue samples, and its role in recurrent adenotonsillitis. Acta Otorhinolaryngol Ital. 27:134–138. 2007.PubMed/NCBI | |
Davenport EK, Call DR and Beyenal H: Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 58:4755–4761. 2014.PubMed/NCBI View Article : Google Scholar | |
Serra DO, Klauck G and Hengge R: Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of Escherichia coli. Environ Microbiol. 17:5073–5088. 2015.PubMed/NCBI View Article : Google Scholar | |
Parsek MR and Greenberg EP: Acyl-homoserine lactone quorum sensing in gram-negative bacteria: A signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA. 97:8789–8793. 2000.PubMed/NCBI View Article : Google Scholar | |
Singh GB, Malhotra S, Yadav SC, Kaur R, Kwatra D and Kumar S: The role of biofilms in chronic otitis media-active squamosal disease: An evaluative study. Otol Neurotol. 42:e1279–e1285. 2021.PubMed/NCBI View Article : Google Scholar | |
Dar D, Dar N, Cai L and Newman DK: Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science. 373(eabi4882)2021.PubMed/NCBI View Article : Google Scholar | |
Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH, Kirketerp-Møller K, Wolcott RD, Rumbaugh KP, Bjarnsholt T and Whiteley M: Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci USA. 115:E5125–E5134. 2018.PubMed/NCBI View Article : Google Scholar | |
Dal Co A, Van Vliet S and Ackermann M: Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. Philos Trans R Soc Lond B Biol Sci. 374(20190080)2019.PubMed/NCBI View Article : Google Scholar | |
Boase S, Foreman A, Cleland E, Tan L, Melton-Kreft R, Pant H, Hu FZ, Ehrlich GD and Wormald PJ: The microbiome of chronic rhinosinusitis: Culture, molecular diagnostics and biofilm detection. BMC Infect Dis. 13(210)2013.PubMed/NCBI View Article : Google Scholar | |
Kostić M, Ivanov M, Babić SS, Tepavčević Z, Radanović O, Soković M and Ćirić A: Analysis of tonsil tissues from patients diagnosed with chronic tonsillitis-microbiological profile, biofilm-forming capacity and histology. Antibiotics (Basel). 11(1747)2022.PubMed/NCBI View Article : Google Scholar | |
Lee MR, Pawlowski KS, Luong A, Furze AD and Roland PS: Biofilm presence in humans with chronic suppurative otitis media. Otolaryngol Head Neck Surg. 141:567–571. 2009.PubMed/NCBI View Article : Google Scholar | |
Hoa M, Syamal M, Schaeffer MA, Sachdeva L, Berk R and Coticchia J: Biofilms and chronic otitis media: An initial exploration into the role of biofilms in the pathogenesis of chronic otitis media. Am J Otolaryngol. 31:241–245. 2010.PubMed/NCBI View Article : Google Scholar | |
Karthikeyan P and Nirmal Coumare V: Incidence and presentation of fungal sinusitis in patient diagnosed with chronic rhinosinusitis. Indian J Otolaryngol Head Neck Surg. 62:381–385. 2010.PubMed/NCBI View Article : Google Scholar | |
Bahethi R, Talmor G, Choudhry H, Lemdani M, Singh P, Patel R and Hsueh W: Chronic invasive fungal rhinosinusitis and granulomatous invasive fungal sinusitis: A systematic review of symptomatology and outcomes. Am J Otolaryngol. 45(104064)2024.PubMed/NCBI View Article : Google Scholar | |
Yang SW, Luo CM and Cheng TC: Fungal abscess of anterior nasal septum complicating maxillary sinus fungal ball rhinosinusitis caused by Aspergillus flavus: Case report and review of literature. J Fungi (Basel). 10(497)2024.PubMed/NCBI View Article : Google Scholar | |
Leszczyńska J, Stryjewska-Makuch G, Lisowska G, Kolebacz B and Michalak-Kolarz M: Fungal sinusitis among patients with chronic rhinosinusitis who underwent endoscopic sinus surgery. Otolaryngol Pol. 72:35–41. 2018.PubMed/NCBI View Article : Google Scholar | |
Marom T, Habashi N, Cohen R and Tamir SO: Role of biofilms in post-tympanostomy tube otorrhea. Ear Nose Throat J. 99 (1 Suppl):22S–29S. 2020.PubMed/NCBI View Article : Google Scholar | |
Manasherob R, Mooney JA, Lowenberg DW, Bollyky PL and Amanatullah DF: Tolerant small-colony variants form prior to resistance within a Staphylococcus aureus biofilm based on antibiotic selective pressure. Clin Orthop Relat Res. 479:1471–1481. 2021.PubMed/NCBI View Article : Google Scholar | |
Habashi N, Marom T, Steinberg D, Zacks B and Tamir SO: Biofilm distribution on tympanostomy tubes: An ex vivo descriptive study. Int J Pediatr Otorhinolaryngol. 138(110350)2020.PubMed/NCBI View Article : Google Scholar | |
Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS and O'Toole GA: A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 426:306–310. 2003.PubMed/NCBI View Article : Google Scholar | |
Kvist M, Hancock V and Klemm P: Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol. 74:7376–7382. 2008.PubMed/NCBI View Article : Google Scholar | |
Tang M, Wei X, Wan X, Ding Z, Ding Y and Liu J: The role and relationship with efflux pump of biofilm formation in Klebsiella pneumoniae. Microb Pathog. 147(104244)2020.PubMed/NCBI View Article : Google Scholar | |
Powell LC, Abdulkarim M, Stokniene J, Yang QE, Walsh TR, Hill KE, Gumbleton M and Thomas DW: Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. NPJ Biofilms Microbiomes. 7(13)2021.PubMed/NCBI View Article : Google Scholar | |
Kosztołowicz T and Metzler R: Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers. Phys Rev E. 102(032408)2020.PubMed/NCBI View Article : Google Scholar | |
Tuon FF, Dantas LR, Suss PH and Tasca Ribeiro VST: Pathogenesis of the Pseudomonas aeruginosa biofilm: A review. Pathogens. 11(300)2022.PubMed/NCBI View Article : Google Scholar | |
Denton O, Wan Y, Beattie L, Jack T, McGoldrick P, McAllister H, Mullan C, Douglas CM and Shu W: Understanding the role of biofilms in acute recurrent tonsillitis through 3D bioprinting of a novel gelatin-PEGDA hydrogel. Bioengineering (Basel). 11(202)2024.PubMed/NCBI View Article : Google Scholar | |
Huang Y, Qin F, Li S, Yin J, Hu L, Zheng S, He L, Xia H, Liu J and Hu W: The mechanisms of biofilm antibiotic resistance in chronic rhinosinusitis: A review. Medicine (Baltimore). 101(e32168)2022.PubMed/NCBI View Article : Google Scholar | |
Abu Bakar M, McKimm J, Haque SZ, Majumder MAA and Haque M: Chronic tonsillitis and biofilms: A brief overview of treatment modalities. J Inflam Res. 11:329–337. 2018.PubMed/NCBI View Article : Google Scholar | |
Schilder AGM, Chonmaitree T, Cripps AW, Rosenfeld RM, Casselbrant ML, Haggard MP and Venekamp RP: Otitis media. Nat Rev Dis Primers. 2(16063)2016.PubMed/NCBI View Article : Google Scholar | |
Duff AF, Jurcisek JA, Kurbatfinski N, Chiang T, Goodman SD, Bakaletz LO and Bailey MT: Oral and middle ear delivery of otitis media standard of care antibiotics, but not biofilm-targeted antibodies, alter chinchilla nasopharyngeal and fecal microbiomes. NPJ Biofilms Microbiomes. 10(10)2024.PubMed/NCBI View Article : Google Scholar | |
Niedzielski A, Chmielik LP and Stankiewicz T: The formation of biofilm and bacteriology in otitis media with effusion in children: A prospective cross-sectional study. Int J Environ Res Public Health. 18(3555)2021.PubMed/NCBI View Article : Google Scholar | |
Abdelhady W, Bayer AS, Seidl K, Moormeier DE, Bayles KW, Cheung AL, Yeaman MR and Xiong YQ: Impact of vancomycin on sarA-mediated biofilm formation: Role in persistent endovascular infections due to methicillin-resistant Staphylococcus aureus. J Infect Dis. 209:1231–1240. 2014.PubMed/NCBI View Article : Google Scholar | |
Rose WE and Poppens PT: Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus. J Antimicrob Chemother. 63:485–488. 2009.PubMed/NCBI View Article : Google Scholar | |
Cho OH, Bae IG, Moon SM, Park SY, Kwak YG, Kim BN, Yu SN, Jeon MH, Kim T, Choo EJ, et al: Therapeutic outcome of spinal implant infections caused by Staphylococcus aureus: A retrospective observational study. Medicine (Baltimore). 97(e12629)2018.PubMed/NCBI View Article : Google Scholar | |
Herrmann G, Yang L, Wu H, Song Z, Wang H, Høiby N, Ulrich M, Molin S, Riethmüller J and Döring G: Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis. 202:1585–1592. 2010.PubMed/NCBI View Article : Google Scholar | |
Giamarellou H, Zissis NP, Tagari G and Bouzos J: In vitro synergistic activities of aminoglycosides and new beta-lactams against multiresistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 25:534–536. 1984.PubMed/NCBI View Article : Google Scholar | |
Giamarellou H: Aminoglycosides plus beta-lactams against gram-negative organisms. Evaluation of in vitro synergy and chemical interactions. Am J Med. 80:126–137. 1986.PubMed/NCBI View Article : Google Scholar | |
Olson ME, Slater SR, Rupp ME and Fey PD: Rifampicin enhances activity of daptomycin and vancomycin against both a polysaccharide intercellular adhesin (PIA)-dependent and -independent Staphylococcus epidermidis biofilm. J Antimicrob Chemother. 65:2164–2171. 2010.PubMed/NCBI View Article : Google Scholar | |
Zimmerli W and Sendi P: Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob Agents Chemother. 63:e01746–18. 2019.PubMed/NCBI View Article : Google Scholar | |
Niska JA, Shahbazian JH, Ramos RI, Francis KP, Bernthal NM and Miller LS: Vancomycin-rifampin combination therapy has enhanced efficacy against an experimental Staphylococcus aureus prosthetic joint infection. Antimicrob Agents Chemother. 57:5080–5086. 2013.PubMed/NCBI View Article : Google Scholar | |
Ferreira Chacon JM, Hato de Almeida E, de Lourdes Simões R, Lazzarin C, Ozório V, Alves BC, Mello de Andréa ML, Santiago Biernat M and Biernat JC: Randomized study of minocycline and edetic acid as a locking solution for central line (port-a-cath) in children with cancer. Chemotherapy. 57:285–291. 2011.PubMed/NCBI View Article : Google Scholar | |
Vermeulen H, van Hattem JM, Storm-Versloot MN and Ubbink DT: Topical silver for treating infected wounds. Cochrane Database Syst Rev: CD005486, 2007. | |
Jiang Y, Zhang Q, Wang H, Välimäki M, Zhou Q, Dai W and Guo J: Effectiveness of silver and iodine dressings on wound healing: A systematic review and meta-analysis. BMJ Open. 14(e077902)2024.PubMed/NCBI View Article : Google Scholar | |
Tateda K, Comte R, Pechere JC, Köhler T, Yamaguchi K and Van Delden C: Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 45:1930–1933. 2001.PubMed/NCBI View Article : Google Scholar | |
Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M and Høiby N: Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agents Chemother. 51:3677–3687. 2007.PubMed/NCBI View Article : Google Scholar | |
Gupta S, Aruna C, Nagaraj S, Dias M and Muralidharan S: In vitro activity of tigecycline against multidrug-resistant gram-negative blood culture isolates from critically ill patients. J Antimicrob Chemother. 67:1293–1295. 2012.PubMed/NCBI View Article : Google Scholar | |
Kostoulias X, Fu Y, Morris FC, Yu C, Qu Y, Chang CC, Blakeway L, Landersdorfer CB, Abbott IJ, Wang L, et al: Ceftolozane/tazobactam disrupts Pseudomonas aeruginosa biofilms under static and dynamic conditions. J Antimicrob Chemother. 80:372–380. 2025.PubMed/NCBI View Article : Google Scholar | |
Miller MB and Bassler BL: Quorum sensing in bacteria. Annu Rev Microbiol. 55:165–199. 2001.PubMed/NCBI View Article : Google Scholar | |
Köhler T, Perron GG, Buckling A and van Delden C: Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLOS Pathog. 6(e1000883)2010.PubMed/NCBI View Article : Google Scholar | |
Tsikopoulos A, Petinaki E, Festas C, Tsikopoulos K, Meroni G, Drago L and Skoulakis C: In vitro inhibition of biofilm formation on silicon rubber voice prosthesis: Α systematic review and meta-analysis. ORL J Otorhinolaryngol Relat Spec. 84:10–29. 2022.PubMed/NCBI View Article : Google Scholar | |
Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO, Høiby N, Bjarnsholt T and Givskov M: Food as a source for quorum sensing inhibitors: Iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol. 78:2410–2421. 2012.PubMed/NCBI View Article : Google Scholar | |
Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, Lei D and Chen Y, Li Y, Kong J and Chen Y: Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One. 12(e0176883)2017.PubMed/NCBI View Article : Google Scholar | |
Prince AA, Steiger JD, Khalid AN, Dogrhamji L, Reger C, Eau Claire SE, Chiu AG, Kennedy DW, Palmer JN and Cohen NA: Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol. 22:239–245. 2008.PubMed/NCBI View Article : Google Scholar | |
Foreman A, Holtappels G, Psaltis AJ, Jervis-Bardy J, Field J, Wormald PJ and Bachert C: Adaptive immune responses in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Allergy. 66:1449–1456. 2011.PubMed/NCBI View Article : Google Scholar | |
Yadav MK, Vidal JE, Go YY, Kim SH, Chae SW and Song JJ: The LuxS/AI-2 quorum-sensing system of Streptococcus pneumoniae is required to cause disease, and to regulate virulence- and metabolism-related genes in a rat model of middle ear infection. Front Cell Infect Microbiol. 8(138)2018.PubMed/NCBI View Article : Google Scholar | |
Dawit G, Mequanent S and Makonnen E: Efficacy and safety of azithromycin and amoxicillin/clavulanate for otitis media in children: A systematic review and meta-analysis of randomized controlled trials. Ann Clin Microbiol Antimicrob. 20(28)2021.PubMed/NCBI View Article : Google Scholar | |
Brown HL, Hanman K, Reuter M, Betts RP and Van Vliet AHM: Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Front Microbiol. 6(699)2015.PubMed/NCBI View Article : Google Scholar | |
Tetz GV, Artemenko NK and Tetz VV: Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother. 53:1204–1209. 2009.PubMed/NCBI View Article : Google Scholar | |
Gawande PV, Leung KP and Madhyastha S: Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr Microbiol. 68:635–641. 2014.PubMed/NCBI View Article : Google Scholar | |
Lamppa JW and Griswold KE: Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob Agents Chemother. 57:137–145. 2013.PubMed/NCBI View Article : Google Scholar | |
Daboor SM, Rohde JR and Cheng Z: Disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate lyase enhances pathogen eradication by antibiotics. J Cyst Fibros. 20:264–270. 2021.PubMed/NCBI View Article : Google Scholar | |
Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S and Webb JS: Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 188:7344–7353. 2006.PubMed/NCBI View Article : Google Scholar | |
Reffuveille F, de la Fuente-Núñez C, Mansour S and Hancock REW: A broad-spectrum antibiofilm peptide enhances Antibiotic Action against bacterial biofilms. Antimicrob Agents Chemother. 58:5363–5371. 2014.PubMed/NCBI View Article : Google Scholar | |
Le CF, Fang CM and Sekaran SD: Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 61:e02340–16. 2017.PubMed/NCBI View Article : Google Scholar | |
Kang J, Dietz MJ and Li B: Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS One. 14(e0216676)2019.PubMed/NCBI View Article : Google Scholar | |
Jalilsood T, Baradaran A, Song AAL, Foo HL, Mustafa S, Saad WZ, Yusoff K and Rahim RA: Inhibition of pathogenic and spoilage bacteria by a novel biofilm-forming Lactobacillus isolate: A potential host for the expression of heterologous proteins. Microb Cell Fact. 14(96)2015.PubMed/NCBI View Article : Google Scholar | |
Li J, Zhang Q, Zhao J, Zhang H and Chen W: Lactobacillus-derived components for inhibiting biofilm formation in the food industry. World J Microbiol Biotechnol. 40(117)2024.PubMed/NCBI View Article : Google Scholar | |
Algburi AR, Jassim SM, Popov IV, Weeks R and Chikindas ML: Lactobacillus acidophilus VB1 co-aggregates and inhibits biofilm formation of chronic otitis media-associated pathogens. Braz J Microbiol. 55:2581–2592. 2024.PubMed/NCBI View Article : Google Scholar | |
Wongchai M, Wongkaewkhiaw S, Kanthawong S, Roytrakul S and Aunpad R: Dual-function antimicrobial-antibiofilm peptide hybrid to tackle biofilm-forming Staphylococcus epidermidis. Ann Clin Microbiol Antimicrob. 23(44)2024.PubMed/NCBI View Article : Google Scholar | |
Tintino SR, Souza VCAD, Silva JMAD, Oliveira-Tintino CDDM, Pereira PS, Leal-Balbino TC, Pereira-Neves A, Siqueira-Junior JP, da Costa JGM, Rodrigues FFG, et al: Effect of vitamin K3 inhibiting the function of NorA efflux pump and its gene expression on Staphylococcus aureus. Membranes (Basel). 10(130)2020.PubMed/NCBI View Article : Google Scholar | |
Monteiro KLC, de Aquino TM and Mendonça Junior FJB: An update on Staphylococcus aureus NorA efflux pump inhibitors. Curr Top Med Chem. 20:2168–2185. 2020.PubMed/NCBI View Article : Google Scholar | |
Lu X, Wang G, Xie Y, Tang W, Liu B and Zhang J: Efflux pump inhibitor combined with ofloxacin decreases MRSA biofilm formation by regulating the gene expression of NorA and quorum sensing. RSC Adv. 13:2707–2717. 2023.PubMed/NCBI View Article : Google Scholar | |
Govindarajan DK, Meghanathan Y, Sivaramakrishnan M, Kothandan R, Muthusamy A, Seviour TW and Kandaswamy K: Enterococcus faecalis thrives in dual-species biofilm models under iron-rich conditions. Arch Microbiol. 204(710)2022.PubMed/NCBI View Article : Google Scholar | |
Brunson DN, Colomer-Winter C, Lam LN and Lemos JA: Identification of multiple iron uptake mechanisms in Enterococcus faecalis and their relationship to virulence. Infect Immun. 91(e0049622)2023.PubMed/NCBI View Article : Google Scholar | |
Kaneko Y, Thoendel M, Olakanmi O, Britigan BE and Singh PK: The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest. 117:877–888. 2007.PubMed/NCBI View Article : Google Scholar | |
Goss CH, Kaneko Y, Khuu L, Anderson GD, Ravishankar S, Aitken ML, Lechtzin N, Zhou G, Czyz DM, McLean K, et al: Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci Transl Med. 10(eaat7520)2018.PubMed/NCBI View Article : Google Scholar | |
Nobile CJ, Ennis CL, Hartooni N, Johnson AD and Lohse MB: A selective serotonin reuptake inhibitor, a proton pump inhibitor, and two calcium channel blockers inhibit Candida albicans biofilms. Microorganisms. 8(756)2020.PubMed/NCBI View Article : Google Scholar | |
Yu Q, Ding X, Xu N, Cheng X, Qian K, Zhang B, Xing L and Li M: In vitro activity of verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms. Int J Antimicrob Agents. 41:179–182. 2013.PubMed/NCBI View Article : Google Scholar | |
Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, Taba MY, Banach M, Al-Rasadi K, Johnston TP and Sahebkar A: Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol. 60:175–199. 2021.PubMed/NCBI View Article : Google Scholar | |
Kong F, Ye B, Lin L, Cai X, Huang W and Huang Z: Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes. Biomed Pharmacother. 82:167–172. 2016.PubMed/NCBI View Article : Google Scholar | |
Graziano TS, Cuzzullin MC, Franco GC, Schwartz-Filho HO, de Andrade ED, Groppo FC and Cogo-Müller K: Statins and antimicrobial effects: Simvastatin as a potential drug against Staphylococcus aureus biofilm. PLoS One. 10(e0128098)2015.PubMed/NCBI View Article : Google Scholar | |
Khodaparast S, Ghanbari F and Zamani H: Evaluation of the effect of ibuprofen in combination with ciprofloxacin on the virulence-associated traits, and efflux pump genes of Pseudomonas aeruginosa. World J Microbiol Biotechnol. 38(125)2022.PubMed/NCBI View Article : Google Scholar | |
Abbas HA, Atallah H, El-Sayed MA and El-Ganiny AM: Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus. Arch Microbiol. 202:2751–2760. 2020.PubMed/NCBI View Article : Google Scholar | |
Severino P, Silveira EF, Loureiro K, Chaud MV, Antonini D, Lancellotti M, Sarmento VH, da Silva CF, Santana MHA and Souto EB: Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): Characterization of physicochemical properties and in vitro efficacy. Eur J Pharm Sci. 106:177–184. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang XF, Zhang SL, Zhu LY, Xie SY, Dong Z, Wang Y and Zhou WZ: Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo. Vet J. 191:115–120. 2012.PubMed/NCBI View Article : Google Scholar | |
Kotrange H, Najda A, Bains A, Gruszecki R, Chawla P and Tosif MM: Metal and metal oxide nanoparticle as a novel antibiotic carrier for the direct delivery of antibiotics. Int J Mol Sci. 22(9596)2021.PubMed/NCBI View Article : Google Scholar | |
Patro SK, Panda NK and Sharma M: Drug repurposing for, ENT and head and neck, infectious and oncologic diseases: Current practices and future possibilities. In: Sobti RC, Lal SK and Goyal RK (eds). Drug Repurposing for Emerging Infectious Diseases and Cancer. Singapore: Springer Nature, pp253-282, 2023. | |
Kora AJ and Arunachalam J: Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J Microbiol Biotechnol. 27:1209–1216. 2011. | |
Caciandone M, Niculescu AG, Grumezescu V, Bîrcă AC, Ghica IC, Vasile BȘ, Oprea O, Nica IC, Stan MS, Holban AM, et al: Magnetite nanoparticles functionalized with therapeutic agents for enhanced ENT antimicrobial properties. Antibiotics (Basel). 11(623)2022.PubMed/NCBI View Article : Google Scholar | |
García-Alvarez R, Izquierdo-Barba I and Vallet-Regí M: 3D scaffold with effective multidrug sequential release against bacteria biofilm. Acta Biomater. 49:113–126. 2017.PubMed/NCBI View Article : Google Scholar | |
Lee M, Park CG, Huh BK, Kim SN, Lee SH, Khalmuratova R, Park JW, Shin HW and Choy YB: Sinonasal delivery of resveratrol via mucoadhesive nanostructured microparticles in a nasal polyp mouse model. Sci Rep. 7(40249)2017.PubMed/NCBI View Article : Google Scholar | |
Cano EJ, Caflisch KM, Bollyky PL, Van Belleghem JD, Patel R, Fackler J, Brownstein MJ, Horne B, Biswas B, Henry M, et al: Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: Case report and in vitro characterization of anti-biofilm activity. Clin Infect Dis. 73:e144–e151. 2021.PubMed/NCBI View Article : Google Scholar | |
Manoharadas S, Altaf M, Alrefaei AF, Hussain SA, Devasia RM, Badjah Hadj AYM and Abuhasil MSA: Microscopic analysis of the inhibition of staphylococcal biofilm formation by Escherichia coli and the disruption of preformed staphylococcal biofilm by bacteriophage. Microsc Res Tech. 84:1513–1521. 2021.PubMed/NCBI View Article : Google Scholar | |
Morris J, Kelly N, Elliott L, Grant A, Wilkinson M, Hazratwala K and McEwen P: Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by Staphylococcus aureus. Surg Infect (Larchmt). 20:16–24. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhao M, Li H, Gan D, Wang M, Deng H and Yang QE: Antibacterial effect of phage cocktails and phage-antibiotic synergy against pathogenic Klebsiella pneumoniae. mSystems. 9(e0060724)2024.PubMed/NCBI View Article : Google Scholar | |
Fong SA, Drilling A, Morales S, Cornet ME, Woodworth BA, Fokkens WJ, Psaltis AJ, Vreugde S and Wormald PJ: Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol. 7(418)2017.PubMed/NCBI View Article : Google Scholar | |
Gordon M and Ramirez P: Efficacy and experience of bacteriophages in biofilm-related infections. Antibiotics (Basel). 13(125)2024.PubMed/NCBI View Article : Google Scholar | |
Lim DJ, Skinner D, Mclemore J, Rivers N, Elder JB, Allen M, Koch C, West J, Zhang S, Thompson HM, et al: In-vitro evaluation of a ciprofloxacin and azithromycin sinus stent for Pseudomonas aeruginosa biofilms. Int Forum Allergy Rhinol. 10:121–127. 2020.PubMed/NCBI View Article : Google Scholar | |
Pakkulnan R, Thonglao N and Chareonsudjai S: DNase I and chitosan enhance efficacy of ceftazidime to eradicate Burkholderia pseudomallei biofilm cells. Sci Rep. 13(1059)2023.PubMed/NCBI View Article : Google Scholar | |
Cresti L, Falciani C, Cappello G, Brunetti J, Vailati S, Melloni E, Bracci L and Pini A: Safety evaluations of a synthetic antimicrobial peptide administered intravenously in rats and dogs. Sci Rep. 12(19294)2022.PubMed/NCBI View Article : Google Scholar |