1.
|
Kroon E, Martinson LA, Kadoya K, et al:
Pancreatic endoderm derived from human embryonic stem cells
generates glucose-responsive insulin-secreting cells in vivo. Nat
Biotechnol. 26:443–452. 2008. View
Article : Google Scholar : PubMed/NCBI
|
2.
|
Thomson JA, Itskovitz-Eldor J, Shapiro SS,
et al: Embryonic stem cell lines derived from human blastocysts.
Science. 282:1145–1147. 1998. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Devolder K: Creating and sacrificing
embryos for stem cells. J Med Ethics. 31:366–370. 2005. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Tzukerman M, Rosenberg T, Ravel Y, Reiter
I, Coleman R and Skorecki K: An experimental platform for studying
growth and invasiveness of tumor cells within teratomas derived
from human embryonic stem cells. Proc Natl Acad Sci USA.
100:13507–13512. 2003. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Drukker M, Katchman H, Katz G, et al:
Human embryonic stem cells and their differentiated derivatives are
less susceptible to immune rejection than adult cells. Stem Cells.
24:221–229. 2006. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Taylor CJ, Bolton EM, Pocock S, Sharples
LD, Pedersen RA and Bradley JA: Banking on human embryonic stem
cells: estimating the number of donor cell lines needed for HLA
matching. Lancet. 366:2019–2025. 2005. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Briggs R and King TJ: Transplantation of
living nuclei from blastula cells into enucleated frogs' eggs. Proc
Natl Acad Sci USA. 38:455–463. 1952.
|
8.
|
Wilmut I, Schnieke AE, McWhir J, Kind AJ
and Campbell KH: Viable offspring derived from fetal and adult
mammalian cells. Nature. 385:810–813. 1997. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Gurdon JB and Byrne JA: The first
half-century of nuclear transplantation. Proc Natl Acad Sci USA.
100:8048–8052. 2003. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Wakayama S, Jakt ML, Suzuki M, et al:
Equivalency of nuclear transfer-derived embryonic stem cells to
those derived from fertilized mouse blastocysts. Stem Cells.
24:2023–2033. 2006. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Cowan CA, Atienza J, Melton DA and Eggan
K: Nuclear reprogramming of somatic cells after fusion with human
embryonic stem cells. Science. 309:1369–1373. 2005. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Matsumura H, Tada M, Otsuji T, et al:
Targeted chromosome elimination from ES-somatic hybrid cells. Nat
Methods. 4:23–25. 2007. View
Article : Google Scholar : PubMed/NCBI
|
13.
|
Matsumura H and Tada T: Cell
fusion-mediated nuclear reprogramming of somatic cells. Reprod
Biomed Online. 16:51–56. 2008. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Silva J, Chambers I, Pollard S and Smith
A: Nanog promotes transfer of pluripotency after cell fusion.
Nature. 441:997–1001. 2006. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Chin MH, Mason MJ, Xie W, et al: Induced
pluripotent stem cells and embryonic stem cells are distinguished
by gene expression signatures. Cell Stem Cell. 5:111–123. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17.
|
Ghosh Z, Wilson KD, Wu Y, Hu S,
Quertermous T and Wu JC: Persistent donor cell gene expression
among human induced pluripotent stem cells contributes to
differences with human embryonic stem cells. PLoS One. 5:e89752010.
View Article : Google Scholar : PubMed/NCBI
|
18.
|
Meissner A, Wernig M and Jaenisch R:
Direct reprogramming of genetically unmodified fibroblasts into
pluripotent stem cells. Nat Biotechnol. 25:1177–1181. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19.
|
Okita K, Ichisaka T and Yamanaka S:
Generation of germline-competent induced pluripotent stem cells.
Nature. 448:313–317. 2007. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Wernig M, Meissner A, Foreman R, et al: In
vitro reprogramming of fibroblasts into a pluripotent ES-cell-like
state. Nature. 448:318–324. 2007. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Takahashi K, Tanabe K, Ohnuki M, et al:
Induction of pluripotent stem cells from adult human fibroblasts by
defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar
|
22.
|
Park IH, Zhao R, West JA, et al:
Reprogramming of human somatic cells to pluripotency with defined
factors. Nature. 451:141–146. 2008. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Yu J, Vodyanik MA, Smuga-Otto K, et al:
Induced pluripotent stem cell lines derived from human somatic
cells. Science. 318:1917–1920. 2007. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Huangfu D, Osafune K, Maehr R, et al:
Induction of pluripotent stem cells from primary human fibroblasts
with only Oct4 and Sox2. Nat Biotechnol. 26:1269–1275. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25.
|
Kim JB, Sebastiano V, Wu G, et al:
Oct4-induced pluripotency in adult neural stem cells. Cell.
136:411–419. 2009. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Yamanaka S: A fresh look at iPS cells.
Cell. 137:13–17. 2009. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Okita K, Nakagawa M, Hyenjong H, Ichisaka
T and Yamanaka S: Generation of mouse induced pluripotent stem
cells without viral vectors. Science. 322:949–953. 2008. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Soldner F, Hockemeyer D, Beard C, et al:
Parkinson's disease patient-derived induced pluripotent stem cells
free of viral reprogramming factors. Cell. 136:964–977. 2009.
|
29.
|
Woltjen K, Michael IP, Mohseni P, et al:
piggyBac transposition reprograms fibroblasts to induced
pluripotent stem cells. Nature. 458:766–770. 2009. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Kaji K, Norrby K, Paca A, Mileikovsky M,
Mohseni P and Woltjen K: Virus-free induction of pluripotency and
subsequent excision of reprogramming factors. Nature. 458:771–775.
2009. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Zhou H, Wu S, Joo JY, et al: Generation of
induced pluripotent stem cells using recombinant proteins. Cell
Stem Cell. 4:381–384. 2009. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Yu J, Hu K, Smuga-Otto K, et al: Human
induced pluripotent stem cells free of vector and transgene
sequences. Science. 324:797–801. 2009. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Shi Y, Desponts C, Do JT, Hahm HS, Scholer
HR and Ding S: Induction of pluripotent stem cells from mouse
embryonic fibroblasts by Oct4 and Klf4 with small-molecule
compounds. Cell Stem Cell. 3:568–574. 2008. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Shi Y, Do JT, Desponts C, Hahm HS, Scholer
HR and Ding S: A combined chemical and genetic approach for the
generation of induced pluripotent stem cells. Cell Stem Cell.
2:525–528. 2008. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Li W, Wei W, Zhu S, et al: Generation of
rat and human induced pluripotent stem cells by combining genetic
reprogramming and chemical inhibitors. Cell Stem Cell. 4:16–19.
2009. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Soria B, Roche E, Berna G, Leon-Quinto T,
Reig JA and Martin F: Insulin-secreting cells derived from
embryonic stem cells normalize glycemia in streptozotocin-induced
diabetic mice. Diabetes. 49:157–162. 2000. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Lumelsky N, Blondel O, Laeng P, Velasco I,
Ravin R and McKay R: Differentiation of embryonic stem cells to
insulin-secreting structures similar to pancreatic islets. Science.
292:1389–1394. 2001. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Kubo A, Shinozaki K, Shannon JM, et al:
Development of definitive endoderm from embryonic stem cells in
culture. Development. 131:1651–1662. 2004. View Article : Google Scholar : PubMed/NCBI
|
39.
|
D'Amour KA, Agulnick AD, Eliazer S, Kelly
OG, Kroon E and Baetge EE: Efficient differentiation of human
embryonic stem cells to definitive endoderm. Nat Biotechnol.
23:1534–1541. 2005.
|
40.
|
D'Amour KA, Bang AG, Eliazer S, et al:
Production of pancreatic hormone-expressing endocrine cells from
human embryonic stem cells. Nat Biotechnol. 24:1392–1401.
2006.PubMed/NCBI
|
41.
|
Jiang J, Au M, Lu K, et al: Generation of
insulin-producing islet-like clusters from human embryonic stem
cells. Stem Cells. 25:1940–1953. 2007. View Article : Google Scholar : PubMed/NCBI
|
42.
|
Tateishi K, He J, Taranova O, Liang G,
D'Alessio AC and Zhang Y: Generation of insulin-secreting
islet-like clusters from human skin fibroblasts. J Biol Chem.
283:31601–31607. 2008. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Zhang D, Jiang W, Liu M, et al: Highly
efficient differentiation of human ES cells and iPS cells into
mature pancreatic insulin-producing cells. Cell Res. 19:429–438.
2009. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Maehr R, Chen S, Snitow M, et al:
Generation of pluripotent stem cells from patients with type 1
diabetes. Proc Natl Acad Sci USA. 106:15768–15773. 2009. View Article : Google Scholar : PubMed/NCBI
|