1.
|
Vale W, Spiess J, Rivier C and Rivier J:
Characterization of a 41-residue ovine hypothalamic peptide that
stimulates secretion of corticotropin and beta-endorphin. Science.
213:1394–1397. 1981. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Spiess J, Rivier J, Rivier C and Vale W:
Primary structure of corticotropin-releasing factor from ovine
hypothalamus. Proc Natl Acad Sci USA. 78:6517–6521. 1981.
View Article : Google Scholar : PubMed/NCBI
|
3.
|
Denver RJ: Structural and functional
evolution of vertebrate neuroendocrine stress systems. Ann NY Acad
Sci. 1163:1–16. 2009. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Perrin MH, Donaldson CJ, Chen R, Lewis KA
and Vale WW: Cloning and functional expression of a rat brain
corticotropin releasing factor (CRF) receptor. Endocrinology.
133:3058–3061. 1993.PubMed/NCBI
|
5.
|
Chen R, Lewis KA, Perrin MH and Vale WW:
Expression cloning of a human corticotropin-releasing-factor
receptor. Proc Natl Acad Sci USA. 90:8967–8971. 1993. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Vita N, Laurent P, Lefort S, et al:
Primary structure and functional expression of mouse pituitary and
human brain corticotrophin releasing factor receptors. FEBS Lett.
335:1–5. 1993. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Chang CP, Pearse RV II, O'Connell S and
Rosenfeld MG: Identification of a seven transmembrane helix
receptor for corticotropin-releasing factor and sauvagine in
mammalian brain. Neuron. 11:1187–1195. 1993. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Potter E, Sutton S, Donaldson C, et al:
Distribution of corticotropin-releasing factor receptor mRNA
expression in the rat brain and pituitary. Proc Natl Acad Sci USA.
91:8777–8781. 1994. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Lovenberg TW, Liaw CW, Grigoriadis DE, et
al: Cloning and characterization of a functionally distinct
corticotropin-releasing factor receptor subtype from rat brain.
Proc Natl Acad Sci USA. 92:836–840. 1995. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Chalmers DT, Lovenberg TW and De Souza EB:
Localization of novel corticotropin-releasing factor receptor
(CRF2) mRNA expression to specific subcortical nuclei in rat brain:
comparison with CRF1 receptor mRNA expression. J Neurosci.
15:6340–6350. 1995.PubMed/NCBI
|
11.
|
Vaughan J, Donaldson C, Bittencourt J, et
al: Urocortin, a mammalian neuropeptide related to fish urotensin I
and to corticotropin-releasing factor. Nature. 378:287–292. 1995.
View Article : Google Scholar : PubMed/NCBI
|
12.
|
Reyes TM, Lewis K, Perrin MH, et al:
Urocortin II: a member of the corticotropin-releasing factor (CRF)
neuropeptide family that is selectively bound by type 2 CRF
receptors. Proc Natl Acad Sci USA. 98:2843–2848. 2001. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Hsu SY and Hsueh AJ: Human stresscopin and
stresscopin-related peptide are selective ligands for the type 2
corticotropin-releasing hormone receptor. Nat Med. 7:605–611. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14.
|
Lewis K, Li C, Perrin MH, et al:
Identification of urocortin III, an additional member of the
corticotropin-releasing factor (CRF) family with high affinity for
the CRF2 receptor. Proc Natl Acad Sci USA. 98:7570–7575. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15.
|
Ohata H and Shibasaki T: Effects of
urocortin 2 and 3 on motor activity and food intake in rats.
Peptides. 25:1703–1709. 2004. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Czimmer J, Million M and Taché Y:
Urocortin 2 acts centrally to delay gastric emptying through
sympathetic pathways while CRF and urocortin 1 inhibitory actions
are vagal dependent in rats. Am J Physiol Gastrointest Liver
Physiol. 290:G511–G518. 2006. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Tanaka C, Asakawa A, Ushikai M, et al:
Comparison of the anorexigenic activity of CRF family peptides.
Biochem Biophys Res Commun. 390:887–891. 2009. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Duggan JP and Booth DA: Obesity,
overeating, and rapid gastric emptying in rats with ventromedial
hypothalamic lesions. Science. 231:609–611. 1986. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Phillips RJ and Powley TL: Gastric volume
rather than nutrient content inhibits food intake. Am J Physiol.
271:R766–R769. 1996.PubMed/NCBI
|
20.
|
Gourcerol G, Wang L, Wang YH, Million M
and Taché Y: Urocortins and cholecystokinin-8 act synergistically
to increase satiation in lean but not obese mice: involvement of
corticotropin-releasing factor receptor-2 pathway. Endocrinology.
148:6115–6123. 2007. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Liu S, Ren W, Qu MH, et al: Differential
actions of urocortins on neurons of the myenteric division of the
enteric nervous system in guinea pig distal colon. Br J Pharmacol.
159:222–236. 2010. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Chatzaki E, Murphy BJ, Wang L, et al:
Differential profile of CRF receptor distribution in the rat
stomach and duodenum assessed by newly developed CRF receptor
antibodies. J Neurochem. 88:1–11. 2004. View Article : Google Scholar : PubMed/NCBI
|