1.
|
Taichman RS, Loberg RD, Mehra R and Pienta
KJ: The evolving biology and treatment of prostate cancer. J Clin
Invest. 117:2351–2361. 2007. View
Article : Google Scholar : PubMed/NCBI
|
2.
|
Pienta KJ and Bradley D: Mechanisms
underlying the development of androgen-independent prostate cancer.
Clin Cancer Res. 12:1665–1671. 2006. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Tannock IF, de Wit R, Berry WR, et al:
Docetaxel plus prednisone or mitoxantrone plus prednisone for
advanced prostate cancer. N Engl J Med. 351:1502–1512. 2004.
View Article : Google Scholar : PubMed/NCBI
|
4.
|
Petrylak DP, Tangen CM, Hussain MH, et al:
Docetaxel and estramustine compared with mitoxantrone and
prednisone for advanced refractory prostate cancer. N Engl J Med.
351:1513–1520. 2004. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Pienta KJ and Smith DC: Advances in
prostate cancer chemotherapy: a new era begins. CA Cancer J Clin.
55:300–318. 2005. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Signoretti S, Montironi R, Manola J, et
al: Her-2-neu expression and progression toward androgen
independence in human prostate cancer. J Natl Cancer Inst.
92:1918–1925. 2000. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Scher HI and Sawyers CL: Biology of
castration-resistant prostate cancer: directed therapies targeting
the androgenreceptor signaling axis. J Clin Oncol. 23:8253–8261.
2005. View Article : Google Scholar : PubMed/NCBI
|
8.
|
So A, Gleave M, Hurtado-Col A and Nelson
C: Mechanisms of the development of androgen independence in
prostate cancer. World J Urol. 23:1–9. 2005. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Culig Z, Hobisch A, Cronauer MV, et al:
Androgen receptor activation in prostatic tumor cell lines by
insulin-like growth factor-I, keratinocyte growth factor and
epidermal growth factor. Cancer Res. 54:5474–5478. 1994.
|
10.
|
Craft N, Shostak Y, Carey M and Sawyers
CL: A mechanism for hormone-independent prostate cancer through
modulation of androgen receptor signaling by the HER-2/neu tyrosine
kinase. Nat Med. 5:280–285. 1999. View
Article : Google Scholar : PubMed/NCBI
|
11.
|
Gioeli D, Ficarro SB, Kwiek JJ, et al:
Androgen receptor phosphorylation. Regulation and identification of
the phosphorylation sites. J Biol Chem. 277:29304–29314. 2002.
View Article : Google Scholar : PubMed/NCBI
|
12.
|
Slamon DJ, Godolphin W, Jones LA, et al:
Studies of the HER-2/ neu proto-oncogene in human breast and
ovarian cancer. Science. 244:707–712. 1989. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Tolmachev V: Imaging of HER-2
overexpression in tumors for guiding therapy. Curr Pharm Des.
14:2999–3011. 2008. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Behr TM, Behe M and Wormann B: Trastuzumab
and breast cancer. N Engl J Med. 345:995–996. 2001. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Tolmachev V and Orlova A: Update on
affibody molecules for in vivo imaging of targets for cancer
therapy. Minerva Biotechnologica. 21:21–30. 2009.
|
16.
|
Nygren PA: Alternative binding proteins:
affibody binding proteins developed from a small three-helix bundle
scaffold. FEBS J. 275:2668–2676. 2008. View Article : Google Scholar
|
17.
|
Orlova A, Magnusson M, Eriksson TL, et al:
Tumor imaging using a picomolar affinity HER2 binding affibody
molecule. Cancer Res. 66:4339–4348. 2006. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Baum RP, Prasad V, Müller D, et al:
Molecular imaging of HER2-expressing malignant tumors in breast
cancer patients using synthetic 111In- or
68Ga-labeled Affibody molecules. J Nucl Med. 51:892–897.
2010. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Feldwisch J, Tolmachev V, Lendel C, et al:
Design of an optimized scaffold for Affibody molecules. J Mol Biol.
398:232–247. 2010. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Ahlgren S, Orlova A, Wållberg H, et al:
Targeting of HER2-expressing tumors using 111In-ABY-025,
a second generation Affibody molecule with a fundamentally
re-engineered scaffold. J Nucl Med. 51:1131–1138. 2010.PubMed/NCBI
|
21.
|
Almqvist Y, Steffen AC, Tolmachev V, Divgi
CR and Sundin A: In vitro and in vivo characterization of
177Lu-huA33: a radioimmunoconjugate against colorectal cancer. Nucl
Med Biol. 33:991–998. 2006. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Wållberg H and Orlova A: Slow
internalization of anti-HER2 synthetic affibody monomer
111In-DOTA-ZHER2:342-pep2: implications for development
of labeled tracers. Cancer Biother Radiopharm. 23:435–442.
2008.
|
23.
|
Agus DB, Scher HI, Higgins B, et al:
Response of prostate cancer to anti-Her-2/neu antibody in
androgen-dependent and -independent human xenograft models. Cancer
Res. 59:4761–4764. 1999.PubMed/NCBI
|
24.
|
Liu Y, Majumder S, McCall W, et al:
Inhibition of HER-2/neu kinase impairs androgen receptor
recruitment to the androgen responsive enhancer. Cancer Res.
65:3404–3409. 2005.PubMed/NCBI
|
25.
|
Ziada A, Barqawi A, Glode LM, et al: The
use of trastuzumab in the treatment of hormone refractory prostate
cancer; phase II trial. Prostate. 60:332–337. 2004. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Lara PN Jr, Chee KG, Longmate J, et al:
Trastuzumab plus docetaxel in HER-2/neu-positive prostate
carcinoma: final results from the California Cancer Consortium
Screening and Phase II Trial. Cancer. 100:2125–2131. 2004.
View Article : Google Scholar : PubMed/NCBI
|
27.
|
Sridhar SS, Hotte SJ, Chin JL, et al: A
multicenter phase II clinical trial of lapatinib (GW572016) in
hormonally untreated advanced prostate cancer. Am J Clin Oncol.
33:609–613. 2010. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Visakorpi T, Kallioniemi OP, Koivula T,
Harvey J and Isola J: Expression of epidermal growth factor
receptor and ERBB2 (HER-2/Neu) oncoprotein in prostatic carcinomas.
Mod Pathol. 5:643–648. 1992.PubMed/NCBI
|
29.
|
Gu K, Mes-Masson AM, Gauthier J and Saad
F: Overexpression of HER-2/neu in human prostate cancer and benign
hyperplasia. Cancer Lett. 99:185–189. 1996. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Ahlgren S, Wållberg H, Tran TA, et al:
Targeting of HER2-expressing tumors with a site-specifically
99mTc-labeled recombinant affibody molecule, ZHER2:2395, with
C-terminally engineered cysteine. J Nucl Med. 50:781–789. 2009.
View Article : Google Scholar : PubMed/NCBI
|
31.
|
Tran TA, Rosik D, Abrahmsén L, et al:
Design, synthesis and biological evaluation of a multifunctional
HER2-specific Affibody molecule for molecular imaging. Eur J Nucl
Med Mol Imaging. 36:1864–1873. 2009. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Austin CD, de Maziere AM, Pisacane PI, et
al: Endocytosis and sorting of ErbB2 and the site of action of
cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell.
15:5268–5282. 2004. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Lub-de Hooge MN, Kosterink JG, Perik PJ,
et al: Preclinical characterisation of 111In-DTPA-trastuzumab. Br J
Pharmacol. 143:99–106. 2004.PubMed/NCBI
|
34.
|
Orlova A, Wållberg H, Stone-Elander S and
Tolmachev V: On the selection of a tracer for PET imaging of
HER2-expressing tumors: direct comparison of a 124I-labeled
affibody molecule and trastuzumab in a murine xenograft model. J
Nucl Med. 50:417–425. 2009. View Article : Google Scholar
|