1.
|
Chinese Pharmacopoeia Committee:
Pharmacopoeia of China. Chinese Medical Science and Technology
Press; Beijing: pp. 2010
|
2.
|
Zhang D, Xiao LY, Cheng YW, Li HL, Feng
ZM, Lin PY, Wu WY and Huang KR: Pharmacological action of Baoji
Pill. Tradit Chin Drug Res Clin Pharmacol. 9:212–214. 1998.
|
3.
|
Xian YF, Suo J, Huang XD, Hou SZ, Chen JN,
Ye MR and Su ZR: A pharmacological study on anti-inflammatory
effects of refined Huodan recipe. Chin J Exp Tradit Med Formul.
13:54–56. 2007.
|
4.
|
Yang Y, Kinoshita K, Koyama K, Takahashi
K, Tai T, Nunoura Y and Watanabe K: Anti-emetic principles of
Pogostemon cablin (Blanco) Benth. Phytomedicine. 6:89–93.
1999. View Article : Google Scholar
|
5.
|
Zhao SC, Jia Q and Liao FL: The
anti-inflammatory and analgesic pharmacological study of Patchouli
extract. Chin Tradit Pat Med. 29:285–287. 2007.
|
6.
|
Suo J, Xian YF, Huang XD, Hou SZ, Chen JN,
Ye MR and Su ZR: A pharmacological study on the anti-allergy
effects of refined Houdan recipe. Chin J Exp Tradit Med Formul.
13:47–49. 2007.
|
7.
|
Qi SS, Hu LP, Chen WN, Sun HB and Ma XD:
Immunological regulation effects of essential oil in leaves of
Cablin Patchouli herbal on mice. Chin Arch Tradit Chin Med.
27:774–776. 2009.
|
8.
|
Liu XR, Fan R, Zhang YY and Zhu MJ: Study
on antimicrobial activities of extracts from Pogestemon
cablin (Blanco) Benth. Food Sci Technol. 24:220–227. 2009.
|
9.
|
Yang D, Chaumont JP and Millet J:
Antifungal activity of the essential oils from Agastache
rugosa and Pogostemon cablin against dermatophytes and
opportunistic fungi. Zhongguo Yao Xue Za Zhi. 35:9–11. 2000.
|
10.
|
Park EJ, Park HR, Lee JS and Kim J:
Licochalcone A: an inducer of cell differentiation and cytotoxic
agent from Pogostemon cablin. Planta Med. 64:464–466. 1998.
View Article : Google Scholar : PubMed/NCBI
|
11.
|
Miyazawa M, Okuno Y, Nakamura S and Kosaka
H: Suppression of the furylfuramide-induced SOS response by
monoterpenoids with a p-menthane skeleton using the Salmonella
typhimurium TA1535/pSK1002 Umu test. J Agric Food Chem.
48:642–647. 2000.PubMed/NCBI
|
12.
|
Zhao ZZ, Lu J, Leung K, Chan CL and Jiang
ZH: Determination of patchoulic alcohol in herba
Pogostemonis by GC-MS-MS. Chem Pharm Bull. 53:856–860. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13.
|
Huang XW, Bai L, Xu FH and Wu YJ:
Inhibitory activities of patchouli alcohol on neurotoxicity of
β-amyloid peptide. Jie Fang Jun Yi Xue Za Zhi. 24:338–340.
2008.
|
14.
|
Huang XW, Liu RT and Lü QJ: Patchouli
alcohol on memory impairment induced by scopolamine learning and
memory function in mice. Zhong Yao Cai. 40:1431–1433. 2009.
|
15.
|
Hu XD, Yang Y, Zhong XG, Zhang XH, Zhang
YN, Zheng ZP, Zhou Y, Tang W, Wang YF, Hu LH and Zuo JP:
Anti-inflammatory effects of Z23 on LPS-induced inflammatory
responses in RAW264.7 macrophages. J Ethnopharmacol. 120:447–451.
2008. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Tao JY, Zheng GH, Zhao L, Wu JG, Zhang XY,
Zhang SL, Huang ZJ, Xiong FL and Li CM: Anti-inflammatory effects
of ethyl acetate fraction from Melilotus suaveolens Ledeb on
LPS-stimulated RAW264.7 cells. J Ethnopharmacol. 123:97–105. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17.
|
Liew FY: The role of innate cytokines in
inflammatory response. Immunol Lett. 85:131–134. 2003. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Bertolini A, Ottani A and Sandrini M:
Selective COX-2 inhibitors and dual acting anti-inflammatory drugs:
critical remarks. Curr Med Chem. 9:1033–1043. 2002. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Isomaki P and Punnone J: Pro and
anti-inflammatory cytokines in rheumatoid arthritis. Ann Med.
29:499–507. 1997. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Korhonen R, Lathi A, Kankaanranta H and
Moilanen E: Nitric oxide production and signaling in inflammation.
Curr Drug Targets Inflamm Allergy. 4:471–479. 2005. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Libby P, Aikawa M and Schönbeck U:
Cholesterol and atherosclerosis. Biochim Biophys Acta.
1529:299–309. 2000. View Article : Google Scholar
|
22.
|
Shin EM, Zhou HY, Guo LY, Kim JA, Lee SH,
Merfort I, Kang SS, Kim HS, Kim S and Kim YS: Anti-inflammatory
effects of glycyrol isolated from Glycyrrhiza uralensis in
LPS-stimulated RAW264.7 macrophages. Int Immunopharmacol.
8:1524–1532. 2008. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Jeong GS, Lee DS and Kim YC: Cudratricus
xanthone A from Cudrania tricuspidata suppresses
pro-inflammatory mediators through expression of anti-inflammatory
heme oxygenase-1 in RAW264.7 macrophages. Int Immunopharmacol.
9:241–246. 2009.PubMed/NCBI
|
24.
|
Guan L, Quan LH, Xu LZ and Cong PZ:
Chemical constituents of Pogostemon cablin (Blanco) Benth.
Zhongguo Zhong Yao Za Zhi. 19:355–356. 1994.
|
25.
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26.
|
Zhang XJ, Li Y, Tai GX, Xu GY, Zhang PY,
Yang Y, Lao FX and Liu ZH: Effects of activin A on the activities
of mouse peritoneal macrophages. Cell Mol Immunol. 2:63–67.
2005.PubMed/NCBI
|
27.
|
Gayathri B, Manjula N, Vinaykumar KS,
Lakshmi BS and Balakrishnan A: Pure compound from Boswellia
serrata extract exhibits anti-inflammatory property in human
PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO
and MAP kinases. Int Immunopharmacol. 7:473–482. 2007.
|
28.
|
Palmer RM, Rees DD, Ashton DS and Moncada
S: L-arginine is the physiological precursor for the formation of
nitric oxide in endothelium-dependent relaxation. Biochem Biophys
Res Commun. 153:1251–1256. 1988. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Schmidt HH and Walter U: NO at work. Cell.
78:919–925. 1994. View Article : Google Scholar : PubMed/NCBI
|
30.
|
MacMicking J, Xie QW and Nathan C: Nitric
oxide and macrophage function. Annu Rev Immunol. 15:323–350. 1997.
View Article : Google Scholar : PubMed/NCBI
|
31.
|
Petros A, Bennett D and Vallance P: Effect
of nitric oxide synthase inhibitors on hypotension in patients with
septic shock. Lancet. 338:1557–1558. 1991. View Article : Google Scholar : PubMed/NCBI
|
32.
|
McCartney-Francis N, Allen JB, Mizel DE,
Albina JE, Xie QW, Nathan CF and Wahl SM: Suppression of arthritis
by an inhibitor of nitric oxide synthase. J Exp Med. 178:749–754.
1993. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Kleemann R, Rothe H, Kolb-Bachofen V, Xie
QW, Nathan C, Martin S and Kolb H: Transcription and translation of
inducible nitric oxide synthase in the pancreas of prediabetic BB
rats. FEBS Lett. 328:9–12. 1993. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Hobbs AJ, Higgs A and Moncada S:
Inhibition of nitric oxide synthase as a potential therapeutic
target. Annu Rev Pharmacol Toxicol. 39:191–220. 1999. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Pacher P, Joseph S, Beckman JS and Liaudet
L: Nitric oxide and peroxynitrite in health and disease. Physiol
Rev. 87:315–424. 2007. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Lin QY, Jin LJ, Cao ZH and Xu YP:
Inhibition of inducible nitric oxide synthase by Acanthopanax
senticosus extract in RAW264.7 macrophages. J Ethnopharmacol.
118:231–236. 2008. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Claria J: Cyclooxygenase-2 biology. Curr
Pharma Des. 9:2177–2190. 2003. View Article : Google Scholar
|
38.
|
Rocca B and FitzGerald GA: Cyclooxygenases
and prostaglandins: shaping up the immune response. Int
Immunopharmacol. 2:603–630. 2002. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Seibert K, Zhang Y, Leahy K, Hauser S,
Masferrer J, Perkins W, Lee L and Isakson P: Pharmacological and
biochemical demonstration of the role of cyclooxygenase 2 in
inflammation and pain. Proc Natl Acad Sci USA. 91:12013–12017.
1994. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Bondeson J: The mechanisms of action of
disease-modifying antirheumatic drugs: a review with emphasis on
macrophage signal transduction and the induction of proinflammatory
cytokines. Gen Pharmacol. 29:127–150. 1997. View Article : Google Scholar
|
41.
|
Andreakos E, Foxwell B and Feldmann M: Is
targeting Toll-like receptors and their signaling pathway a useful
therapeutic approach to modulating cytokine-driven inflammation?
Immunol Rev. 202:250–265. 2004. View Article : Google Scholar : PubMed/NCBI
|
42.
|
Dayer JM: The process of identifying and
understanding cytokines: from basic studies to treating rheumatic
diseases. Best Pract Res Clin Rheumatol. 18:31–45. 2004. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Shohami E, Ginis I and Hallenbeck JM: Dual
role of tumor necrosis factor alpha in brain injury. Cytokine
Growth Factor Rev. 10:119–130. 1999. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Yoon HJ, Moon ME, Park HS, Im SY and Kim
YH: Chitosan oligosaccharide (COS) inhibits LPS-induced
inflammatory effects in RAW 264.7 macrophage cells. Biochem Biophys
Res Commun. 358:954–959. 2007. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Straub RH, Linde DN, Mannel J, Scholmerich
W and Falk A: A bacteria-induced switch of sympathetic effect or
mechanisms augments local inhibition of TNF-α and IL-6 secretion in
the spleen. FASEB J. 14:1380–1388. 2000.PubMed/NCBI
|
46.
|
Hibi M, Nakajima K and Hirano T: IL-6
cytokine family and signal transduction: a model of the cytokine
system. J Mol Med. 74:1–12. 1996. View Article : Google Scholar : PubMed/NCBI
|
47.
|
Hirano T, Matsuda T and Nakajima K: Signal
transduction through gp130 that is shared among the receptors for
the interleukin 6 related cytokine subfamily. Stem Cells.
12:262–277. 1994. View Article : Google Scholar : PubMed/NCBI
|
48.
|
Van Snick J: Interleukin-6: an overview.
Annu Rev Immunol. 8:253–278. 1990.
|
49.
|
Taga T and Kishimoto T: Gp130 and the
interleukin-6 family of cytokines. Annu Rev Immunol. 15:797–819.
1997. View Article : Google Scholar : PubMed/NCBI
|