1
|
Behin A, Hoang-Xuan K, Carpentier AF and
Delattre JY: Primary brain tumours in adults. Lancet. 361:323–331.
2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Preusser M, de Ribaupierre S, Wohrer A, et
al: Current concepts and management of glioblastoma. Ann Neurol.
70:9–21. 2011. View Article : Google Scholar
|
3
|
Lacroix M, Abi-Said D, Fourney DR, et al:
A multivariate analysis of 416 patients with glioblastoma
multiforme: prognosis, extent of resection, and survival. J
Neurosurg. 95:190–198. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lefranc F, Sadeghi N, Camby I, Metens T,
Dewitte O and Kiss R: Present and potential future issues in
glioblastoma treatment. Expert Rev Anticancer Ther. 6:719–732.
2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ewald JA, Desotelle JA, Wilding G and
Jarrard DF: Therapy-induced senescence in cancer. J Natl Cancer
Inst. 102:1536–1546. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kuilman T, Michaloglou C, Mooi WJ and
Peeper DS: The essence of senescence. Genes Dev. 24:2463–2479.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rodier F and Campisi J: Four faces of
cellular senescence. J Cell Biol. 192:547–556. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Campisi J: Senescent cells, tumor
suppression, and organismal aging: good citizens, bad neighbors.
Cell. 120:513–522. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gewirtz DA, Holt SE and Elmore LW:
Accelerated senescence: an emerging role in tumor cell response to
chemotherapy and radiation. Biochem Pharmacol. 76:947–957. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Roberson RS, Kussick SJ, Vallieres E, Chen
SY and Wu DY: Escape from therapy-induced accelerated cellular
senescence in p53-null lung cancer cells and in human lung cancers.
Cancer Res. 65:2795–2803. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Te Poele RH, Okorokov AL, Jardine L,
Cummings J and Joel SP: DNA damage is able to induce senescence in
tumor cells in vitro and in vivo. Cancer Res. 62:1876–1883.
2002.PubMed/NCBI
|
12
|
Flanagan JL, Simmons PA, Vehige J, Willcox
MD and Garrett Q: Role of carnitine in disease. Nutr Metab (Lond).
7:302010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yano H, Oyanagi E, Kato Y, Samejima Y,
Sasaki J and Utsumi K: L-carnitine is essential to beta-oxidation
of quarried fatty acid from mitochondrial membrane by PLA(2). Mol
Cell Biochem. 342:95–100. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang C, Sadovova N, Ali HK, et al:
L-carnitine protects neurons from
1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat
forebrain culture. Neuroscience. 144:46–55. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Revoltella RP, Dal Canto B, Caracciolo L
and D’Urso CM: L-carnitine and some of its analogs delay the onset
of apoptotic cell death initiated in murine C2.8 hepatocytic cells
after hepatocyte growth factor deprivation. Biochim Biophys Acta.
1224:333–341. 1994. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sparagna GC, Hickson-Bick DL, Buja LM and
McMillin JB: A metabolic role for mitochondria in palmitate-induced
cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol.
279:H2124–H2132. 2000.PubMed/NCBI
|
17
|
Chang B, Nishikawa M, Sato E, Utsumi K and
Inoue M: L-Carnitine inhibits cisplatin-induced injury of the
kidney and small intestine. Arch Biochem Biophys. 405:55–64. 2002.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Calabrese V, Cornelius C, Stella AM and
Calabrese EJ: Cellular stress responses, mitostress and carnitine
insufficiencies as critical determinants in aging and
neurodegenerative disorders: role of hormesis and vitagenes.
Neurochem Res. 35:1880–1915. 2010. View Article : Google Scholar
|
19
|
Rauchova H, Koudelova J, Drahota Z and
Mourek J: Hypoxia-induced lipid peroxidation in rat brain and
protective effect of carnitine and phosphocreatine. Neurochem Res.
27:899–904. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Coulthard LR, White DE, Jones DL,
McDermott MF and Burchill SA: p38(MAPK): stress responses from
molecular mechanisms to therapeutics. Trends Mol Med. 15:369–379.
2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Debacq-Chainiaux F, Boilan E, Dedessus Le
Moutier J, Weemaels G and Toussaint O: p38 (MAPK) in the senescence
of human and murine fibroblasts. Adv Exp Med Biol. 694:126–137.
2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Malkoun N, Chargari C, Forest F, et al:
Prolonged temozolomide for treatment of glioblastoma: preliminary
clinical results and prognostic value of p53 overexpression. J
Neurooncol. 106:127–133. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Stupp R, Mason WP, van den Bent MJ, et al:
Radiotherapy plus concomitant and adjuvant temozolomide for
glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mhaidat NM, Zhang XD, Allen J,
Avery-Kiejda KA, Scott RJ and Hersey P: Temozolomide induces
senescence but not apoptosis in human melanoma cells. Br J Cancer.
97:1225–1233. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
De la Lastra CA and Villegas I:
Resveratrol as an anti-inflammatory and anti-aging agent:
mechanisms and clinical implications. Mol Nutr Food Res.
49:405–430. 2005.PubMed/NCBI
|
26
|
Um JH, Park SJ, Kang H, et al:
AMP-activated protein kinase-deficient mice are resistant to the
metabolic effects of resveratrol. Diabetes. 59:554–563. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zamin LL, Filippi-Chiela EC,
Dillenburg-Pilla P, Horn F, Salbego C and Lenz G: Resveratrol and
quercetin cooperate to induce senescence-like growth arrest in C6
rat glioma cells. Cancer Sci. 100:1655–1662. 2009. View Article : Google Scholar : PubMed/NCBI
|