1.
|
Sinkkonen ST, Chai R, Jan TA, et al:
Intrinsic regenerative potential of murine cochlear supporting
cells. Sci Rep. 1:262011. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Pan N, Jahan I, Kersigo J, Duncan JS,
Kopecky B and Fritzsch B: A novel Atoh1 ‘self-terminating’ mouse
model reveals the necessity of proper Atoh1 level and duration for
hair cell differentiation and viability. PLoS One.
7:e303582012.
|
3.
|
Han Z, Yang JM, Chi FL, Cong N, Huang YB,
Cao Z and Li W: Survival and fate of transplanted embryonic neural
stem cells by Atoh1 gene transfer in guinea pigs cochlea.
Neuroreport. 21:490–496. 2010. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Bernstein BW and Bamburg JR: ADF/cofilin:
a functional node in cell biology. Trends Cell Biol. 20:187–195.
2010. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Herde MK, Friauf E and Rust MB:
Developmental expression of the actin depolymerizing factor ADF in
the mouse inner ear and spiral ganglia. J Comp Neurol.
518:1724–1741. 2010. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Kuure S, Cebrian C, Machingo Q, et al:
Actin depolymerizing factors cofilin1 and destrin are required for
ureteric bud branching morphogenesis. PloS Genet. 6:e10011762010.
View Article : Google Scholar : PubMed/NCBI
|
7.
|
Blair A, Tomlinson A, Pham H, Gunsalus KC,
Goldberg ML and Laski FA: Twinstar, the Drosophila homolog of
cofilin/ADF, is required for planar cell polarity patterning.
Development. 133:1789–1797. 2006. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Pham H, Yu H and Laski FA: Cofilin/ADF is
required for retinal elongation and morphogenesis of the Drosophila
rhabdomere. Dev Biol. 318:82–91. 2008. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Görlich A, Wolf M, Zimmermann AM, et al:
N-cofilin can compensate for the loss of ADF in excitatory
synapses. PLoS One. 6:e267892011.PubMed/NCBI
|
10.
|
Han YG and Alvarez-Buylla A: Role of
primary cilia in brain development and cancer. Curr Opin Neurobiol.
20:58–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Verdoni AM, Aoyama N, Ikeda A and Ikeda S:
The effect of destrin mutations on the gene expression profile in
vivo. Physiol Genomics. 34:9–21. 2008. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Kawakami-Schulz SV, Verdoni AM, Sattler
SG, Ikeda A and Ikeda S: Differences in corneal phenotypes between
destrin mutants are due to allelic difference and modified by
genetic background. Mol Vis. 18:606–616. 2012.
|
13.
|
Zhang W, Zhao J, Chen L, Urbanowicz MM and
Nagasaki T: Abnormal epithelial homeostasis in the cornea of mice
with a destrin deletion. Mol Vis. 14:1929–1939. 2008.PubMed/NCBI
|
14.
|
Rida PCG and Chen P: Line up and listen:
Planar cell polarity regulation in the mammalian inner ear. Semin
Cell Dev Biol. 20:978–985. 2009. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Chacon-Heszele MF, Ren D, Reynold AB, Chi
F and Chen P: Regulation of cochlear convergent extension by the
vertebrate planar cell polarity pathway is dependent on
p120-catenin. Development. 139:968–978. 2012. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Jones C, Roper VC, Foucher I, et al:
Ciliary proteins link basal body polarization to planar cell
polarity regulation. Nat Genet. 40:69–77. 2008. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Manor U and Kachar B: Dynamic length
regulation of sensory stereocilia. Semin Cell Dev Biol. 19:502–510.
2008. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Matsumoto N, Kitani R, Maricle A, Mueller
M and Kalinec F: Pivotal role of actin depolymerization in the
regulation of cochlear outer hair cell motility. Biophys J.
99:2067–2076. 2010. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Tanimoto M, Ota Y, Inoue M and Oda Y:
Origin of inner ear hair cells: morphological and functional
differentiation from ciliary cells into hair cells in zebrafish
inner ear. J Neurosci. 31:3784–3794. 2011. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Miyoshi J and Takai Y: Structural and
functional associations of apical junctions with cytoskeleton.
Biochim Biophys Acta. 1778:670–691. 2008. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Schwander M, Kachar B and Müller U: The
cell biology of hearing. J Cell Biol. 190:9–20. 2010. View Article : Google Scholar
|
22.
|
Manor U, Disanza A, Grati M, et al:
Regulation of stereocilia length by myosin XVa and whirlin depends
on the actin-regulatory protein Eps8. Curr Biol. 21:167–172. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23.
|
Wansleeben C and Meijlink F: The planar
cell polarity pathway in vertebrate development. Dev Dyn.
240:616–626. 2011. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Van Troys M, Huyck L, Leyman S, Dhaese S,
Vandekerkhove J and Arnpe C: Ins and outs of ADF/cofilin activity
and regulation. Eur J Cell Biol. 87:649–667. 2008.PubMed/NCBI
|
25.
|
Wallingford JB and Mitchell B: Strange as
it may seem: the many links between Wnt signaling, planar cell
polarity, and cilia. Genes Dev. 25:201–213. 2011. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Oteiza P, Köppen M, Krieg M, et al: Planar
cell polarity signalling regulates cell adhesion properties in
progenitors of the zebrafish laterality organ. Development.
137:3459–3468. 2010. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Corbit KC, Shyer AE, Dowdle WE, et al:
Kif3a constrains beta-catenin-dependent Wnt signalling through dual
ciliary and non-ciliary mechanisms. Nat Cell Biol. 10:70–76. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28.
|
He X: Cilia put a brake on Wnt signalling.
Nat Cell Biol. 10:11–13. 2008. View Article : Google Scholar : PubMed/NCBI
|