1
|
Speed C: Low back pain. BMJ.
328:1119–1121. 2004. View Article : Google Scholar
|
2
|
Tolonen J, Grönblad M, Vanharanta H, Virri
J, Guyer RD, Rytömaa T and Karaharju EO: Growth factor expression
in degenerated intervertebral disc tissue. An immunohistochemical
analysis of transforming growth factor beta, fibroblast growth
factor and platelet-derived growth factor. Eur Spine J. 15:588–596.
2006.
|
3
|
Fraser RD, Osti OL and Vernon-Roberts B:
Intervertebral disc degeneration. Eur Spine J. 1:205–213. 1993.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Le Maitre CL, Pockert A, Buttle DJ,
Freemont AJ and Hoyland JA: Matrix synthesis and degradation in
human intervertebral disc degeneration. Biochem Soc Trans.
35:652–655. 2007.PubMed/NCBI
|
5
|
Roughley PJ, Alini M and Antoniou J: The
role of proteoglycans in aging, degeneration and repair of the
intervertebral disc. Biochem Soc Trans. 30:869–874. 2002.
View Article : Google Scholar
|
6
|
Inkinen RI, Lammi MJ, Lehmonen S,
Puustjärvi K, Kääpä E and Tammi MI: Relative increase of biglycan
and decorin and altered chondroitin sulfate epitopes in the
degenerating human intervertebral disc. J Rheumatol. 25:506–514.
1998.PubMed/NCBI
|
7
|
Roberts S, Caterson B, Menage J, Evans EH,
Jaffray DC and Eisenstein SM: Matrix metalloproteinases and
aggrecanase: their role in disorders of the human intervertebral
disc. Spine (Phila Pa 1976). 25:3005–3013. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Patel KP, Sandy JD, Akeda K, Miyamoto K,
Chujo T, An HS and Masuda K: Aggrecanases and aggrecanase-generated
fragments in the human intervertebral disc at early and advanced
stages of disc degeneration. Spine (Phila Pa 1976). 32:2596–2603.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hatano E, Fujita T, Ueda Y, Okuda T,
Katsuda S, Okada Y and Matsumoto T: Expression of ADAMTS-4
(aggrecanase-1) and possible involvement in regression of lumbar
disc herniation. Spine (Phila Pa 1976). 31:1426–1432. 2006.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen WH, Lo WC, Lee JJ, Su CH, Lin CT, Liu
HY, Lin TW, Lin WC, Huang TY and Deng WP: Tissue-engineered
intervertebral disc and chondrogenesis using human nucleus pulposus
regulated through TGF-beta1 in platelet-rich plasma. J Cell
Physiol. 209:744–754. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Le Maitre CL, Freemont AJ and Hoyland JA:
The role of interleukin-1 in the pathogenesis of human
intervertebral disc degeneration. Arthritis Res Ther. 7:R732–R745.
2005.
|
12
|
Christian WA, Alexander M and Marco Z:
Magnetic resonance classification of 275 lumbar intervertebral disc
degeneration. Spine (Phila Pa 1976). 17:1873–1878. 2762001.
|
13
|
Kluba T, Niemeyer T, Gaissmaier C and
Gründer T: Human anulus fibrosis and nucleus pulposus cells of the
intervertebral disc: effect of degeneration and culture system on
cell phenotype. Spine (Phila Pa 1976). 30:2743–2748. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Pockert AJ, Richardson SM, Le Maitre CL,
Lyon M, Deakin JA, Buttle DJ, Freemont AJ and Hoyland JA: Modified
expression of the ADAMTS enzymes and tissue inhibitor of
metalloproteinases 3 during human intervertebral disc degeneration.
Arthritis Rheum. 60:482–491. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Majumdar MK, Askew R, Schelling S, Stedman
N, Blanchet T, Hopkins B, Morris EA and Glasson SS: Double-knockout
of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal
animals and prevents the progression of osteoarthritis. Arthritis
Rheum. 56:3670–3674. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Stanton H, Rogerson FM, East CJ, Golub SB,
Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, et
al: ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and
in vitro. Nature. 434:648–652. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Osada R, Ohshima H, Ishihara H, Yudoh K,
Sakai K, Matsui H and Tsuji H: Autocrine/paracrine mechanism of
insulin-like growth factor-1 secretion, and the effect of
insulin-like growth factor-1 on proteoglycan synthesis in bovine
intervertebral discs. J Orthop Res. 14:690–699. 1996. View Article : Google Scholar : PubMed/NCBI
|
18
|
Risbud MV, Albert TJ, Guttapalli A,
Vresilovic EJ, Hillibrand AS, Vaccaro AR and Shapiro IM:
Differentiation of mesenchymal stem cells towards a nucleus
pulposus-like phenotype in vitro: implications for cell-based
transplantation therapy. Spine (Phila Pa 1976). 29:2627–2632. 2004.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Gruber HE, Fisher EC Jr, Desai B, Stasky
AA, Hoelscher G and Hanley EN Jr: Human intervertebral disc cells
from the annulus: three-dimensional culture in agarose or alginate
and responsiveness to TGF-beta1. Exp Cell Res. 235:13–21. 1997.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Burke JG, Watson GRW, Conhyea D, McCormack
D, Dowling FE, Walsh MG and Fitzpatrick JM: Human nucleus pulposis
can respond to a pro-inflammatory stimulus. Spine (Phila Pa 1976).
28:2685–2693. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tsuji T, Chiba K, Imabayashi H, Fujita Y,
Hosogane N, Okada Y and Toyama Y: Age-related changes in expression
of tissue inhibitor of metalloproteinases-3 associated with
transition from the notochordal nucleus pulposus to the
fibrocartilaginous nucleus pulposus in rabbit intervertebral disc.
Spine (Phila Pa 1976). 32:849–856. 2007. View Article : Google Scholar
|